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Overview 

• Start Date: 09/01/2007 
• End Date: 8/31/2014 
• Percent Complete: 45% 

U.  High-Temperature Thermochemical 
 Technology 
V.  High-Temperature Robust Materials 
W.  Concentrated Solar Energy Capital Cost 
X.  Coupling Concentrated Solar Energy & 

Thermochemical Cycles 
• 2017 H2 Production Target: $3.00/kg 
• 2017 Cycle Efficiency Target: >35% 

• Total project funding 
– DOE share: $5.4M 
– Contractor share: $1.4M 

• Funding recvd. in FY11: $750k 
• Planned Funding for FY12: $700k  
 

Timeline 

Budget 

Barriers 

Partners 
• SAIC (Lead) 
   Solar System/Receiver  
• UCSD/TChemE 
   Thermochemical 

Process 
• Electrosynthesis 
    Salt Electrolysis 
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Overall Project Objectives 
• RD&D of the Viability of a New & Improved Sulfur Family Thermochemical Water-Splitting Cycle for 

large-scale hydrogen production using solar energy 
• More Specifically, Overall Project Goals are to: 

Evaluate SA water-splitting cycles that employ photocatalytic or electrolytic hydrogen evolution  
steps and perform lab testing to demonstrate feasibility of the chemistry 
– Perform economic analyses of SA cycles as they evolve 
– Select a cycle that has high potential for meeting the DOE 2017 cost target of $3/kg hydrogen 

and efficiency goal of >35% 
– Demonstrate technical feasibility of the selected SA cycle in bench-scale, closed-loop tests 
– Demonstrate pre-commercial feasibility by testing and evaluation of a fully-integrated pilot-scale 

closed-cycle solar hydrogen production plant 
 

Past Year Project Objectives 
 

• Complete Optimization of Electrolytic Oxidation Process 
– Test at higher temp (130oC) & higher pressure regimes 
– Incorporate better catalysts that lower the over-potential at the anode & allow operation over a 

range of current densities 
– Maintain pH at anode and cathode to avoid formation of reduced sulfur species  
– Perform 500 hour durability test & cell design improvement 

• Complete Evaluation of High-Temperature K2SO4 Sub-Cycle 
– Study phase equilibria of salt mixtures and identify favorable conditions for the process 
– evaluate salt mixtures to expand operational range 
– Optimization of process parameters and identification of side reactions and by-products 

• Economic and Solar System Analysis 
– Continued Refinement of the Solar Field, Aspen Plus, and H2A Analyses to Incorporate 

Chemical Process Modifications 
– Evaluation of receiver materials, storage and control strategies 

 
 

 

Relevance 
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Impact on Program Barriers 
• U. High-Temperature Thermochemical Technology – This project is 

developing a new thermochemical cycle intended to operate at lower 
temperatures and be more cost effective than other cycles. 
 

• V. High-Temperature Robust Materials – Materials able to operate in 
the high temperatures and caustic environment of the receivers and 
reactors are being developed. 

 
• W. Concentrated Solar Energy Capital Cost –System costs are being 

reduced by optimizing the solar-chemical plant interface. 
 
• X. Coupling Concentrated Solar Energy & Thermochemical Cycles 

– The solar field and receivers are being evaluated and designed to 
provide appropriate amounts of energy at necessary temperature levels 
and with appropriate controls. 
 

Relevance 
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Approach 
• Develop an Improved Sulfur-family Thermochemical Water-

Splitting Cycle with Fewer Phenomenological Hurdles 
• Conduct Laboratory Evaluation of all Processes within the Cycle 
• Develop Comprehensive Aspen Plus® Flowsheet(s) of the Cycle 

and Modifications 
• Perform H2A Analysis of the Flowsheeted Cycle(s) to Compare 

Design and Operational Approaches 
• Design a Solar Collector Field and Receivers to Complement 

Chemical Process and Maximize Solar/System Efficiency 
• Refine Process with Improvements Suggested by Lab Testing, 

Solar Configuration Studies, and H2A/Aspen Plus Analyses 
• Perform Bench-Scale On-Sun Testing of Individual Chemical 

Processes, then Integrated Pilot-Scale Testing 
 

Approach 
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Milestones 
2011 Milestones 
• Confirm thermodynamic viability of overall SA cycle with Aspen Plus® modeling – 

100% complete 
• Electrolytic H2 production step: <0.8V, >50mA/cm2  – 100% complete 
• All-liquid O2 production step validation  - 100% complete 
• Update solar concentrating system to match chemistry– 100% complete 
 
2012 Milestones 
• Reduce energy consumption of electrolytic H2 production step 20% by decreasing 

voltage – 80% complete 
• Demonstrate the molten salt is liquid and will flow (low viscosity) so it is easily 

pumped- 100% complete 
• Demonstrate the NH3 can be separated from the SO3 by thermal decomposition 

thus avoiding potentially uneconomic gas separation processes - 85% complete 
• Develop a fully functioning and converging Aspen Plus modeling of the SA cycle – 

80% complete 
• Update solar concentrating system to match chemistry – 50% complete 
 

2012 Go/No-Go Decision Points 
• Demonstrate the viability of the overall SA cycle, with no show stoppers 

– Electrolytic cell with current efficiency >90%, voltage 0.5-0.8V, current density 
50-500mA/cm2, 500 + hour test 

– Thermodynamic and chemical plant analyses show the cycle can be closed 
and conversion yields for the O2 production step are 90% + for all high 
temperature reactions 

 

Approach 
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Electrolytic SA Process 
Tech. Progress 

electricity Solar Thermal Power 

Electrolytic 
Reactor 

Chemical 
Absorber 

Mid-Temp 
Reactor 

Low-Temp 
Reactor 

H2O 

K2SO4 

SO2+ ½O2 

H2O 

(NH4)2SO3 

 

(NH4)2SO4 

 

O2 

H2 

e- 

NH3 High-Temp 
Reactor 

SO3 K2S2O7 
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SO2(g) + 2NH3(g) + H2O(l) → (NH4)2SO3(aq)  1. chem. absorption   25-50oC 
(NH4)2SO3(aq) + H2O(l) → (NH4)2SO4(aq) + H2  2. electrolytic            80-150oC 
(NH4)2SO4(aq) +  K2SO4(l) → K2S2O7(l) + 2NH3(g) + H2O(g) 3. adiabatic mixing   400-450oC 
K2S2O7(l) → K2SO4(l) + SO3(g)  4. solar thermal   550-850oC 
SO3(g) → SO2(g) + ½ O2(g)  5. solar thermal (850-1,000oC)/ 
      electric 1,000-1,200oC 



Electrolysis Progress 
• New catalysts and electrode materials have been tested over a range of 

current densities and temperatures (80 – 130oC). Promising materials include 
spinels MxN3-xO4 (where M,N=Fe/Ni/Co), Pt/Co and vanadium oxides. To 
date, Pt/Co has shown the best catalytic performance. 

• Quantitative hydrogen production with efficient sulfite oxidation has been 
verified with divided cells. 

• Economic modeling has shown that the minimum annualized cost is at 
current densities <100 mA/cm2. 
 

 
 

Tech. Progress 
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Electrolysis Progress 
Tech. Progress 

Pressure reactor capable of 150 psi is 
being used to test electrolytic cells at 
130oC. 

 

Operation of the cell at 50 mA/cm2 
allows operation up to 90% 
conversion of sulfite with only a  
60 mV penalty. 

Cell 
Housing 
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Oxygen Generation Half-Cycle 
• The all-fluid high-temperature sub-cycle using potassium sulfate-potassium pyrosulfate 

has been demonstrated by measuring the viscosity of the salts, which is low enough to 
be pumped 

• Thermochemical reactor and Residual Gas Analysis (RGA) equipment is set up at UCSD 
and data have been collected and analyzed to show ammonia & sulfur trioxide gases can 
be evolved separately  

Tech. Progress 

RGA 

Reactor inside 
Furnace 

8 ” 3 ” 4 ” 

1 ” 0.5 ” 

1 to 5 g samples 10 



RGA Analysis of Salts  
for Oxygen Generation Half Cycle 

Tech. Progress 

(NH4)2SO4 + K2SO4 + 4 K2S2O7 + Na2SO4 + 4 Na2S2O7    (2 grams) 

425oC 450oC 475oC 500oC 525oC 550oC 575oC 

375oC 400oC 

• Heated at 20oC/min 
between temperatures 

• Held at indicated 
temperatures for ~60 
minutes each 
 

• Ammonia release begins at 
450oC and ends by 475oC 

• SO3 release begins at  
500°C 
 

• ~25-50oC between the end 
of ammonia release and 
the start of SO3 release 
 

NH3 

SO3 
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Molten Salts can be Easily Pumped 
Tech. Progress 

K2SO4 + 4 K2S2O7 + Na2SO4 + 4 Na2S2O7 K2SO4 + 9 K2S2O7 + Na2SO4 + 9 Na2S2O7 

* The bold vertical line indicates melting point * 

ρ = ~2000 kg/m3 ρ = ~1800 kg/m3 

38
5 

o C
 

33
4 

o C
 

• Viscosity of K2SO4 + 4 K2S2O7 + Na2SO4 + 4 Na2S2O7 ranged from 0.53 - 2.2 cP 
from 419 - 507oC 

• Viscosity of K2SO4 + 9 K2S2O7 + Na2SO4 + 9 Na2S2O7 ranged from 0.29 - 2.3 cP 
from 393 - 510oC 

• We measured melting points, densities, and viscosities 12 



Tech. Progress Aspen Plus®  
Process Model Schematic 
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Aspen Plus®  
Process Model Improvements 

• Low temperature reactor: 
‒ A design specification was implemented to regulate flow of salt stream to keep reactor 

at specified temperature (e.g., 400°
 

C). 
• Mid temperature reactor: 

‒ A design specification was implemented to input molten salt thermodynamics from 
Lindberg et al1 paper. 

‒ This allows for more realistic values of K2S2O7 decomposition at plant temperature 
(835°

 
C) and pressure (9 bar). 

• Electrolyzer: 
‒ A calculator block was placed to compute the power input needed at 0.8 V and an 

output concentration of a 2.5 M solution; values supplied by Electrosynthesis 
Company, Inc. 

• Efficiency calculator: 
‒ A calculator block was placed in the flowsheet to compute the efficiency, as defined by 

DOE. 
• Sensitivity analyses: 

‒ With the thermodynamics and physical parameter values, sensitivity analyses were 
conducted to obtain realistic values for plant operating conditions, i.e. pressures, 
temperatures, compositions. 

 
1 Lindberg, D., R. Backman, and P. Chartrand. "Thermodynamic Evaluation and Optimization of the 

(Na2SO4+K2SO4+Na2S2O7+K2S2O7) System." The Journal of Chemical Thermodynamics 38.12 (2006): 1568-583. Web. 

Tech. Progress 
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Tech. Progress 

High Temperature
Reactor

Mid Temperature
Reactor

Low Temperture
Reactor

Electrolyzer

Hydrogen
Compressor

Dryer

Hydrogen
Scrubber

Oxygen
Scrubber

Sulfur Dioxide
Absorber

KO drum

Hydrogen
Product

Oxygen
Product

 

Rankine Power Plant

• Complete process at 9 bar 
• Recovers heat of solution of SO2 and NH3 
• Hydrogen compressed to 300 psig 
• Rankine power recovery system 
• 24/7 production of hydrogen 

• Excess electricity produced, or optionally 
partially used to Joule Boost SO3 
decomposition, simplifying solar system 

• Overall efficiency ~40% (JB ~36%) 
• Hydrogen only efficiency ~20% (JB ~22% 

Alternate Flowsheet 
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Solar Receiver Development 
• SAIC cost-share supported two student interns in 2011 
• Developed conceptual design of a receiver suitable for the SAIC 

115 sq.m. dish concentrator system.   
– Approximately 100kW peak thermal input 
– Sufficient for production of ~0.8 kg/hr of hydrogen 

• Design effort focused on the high-temperature SO3 
decomposition reactor 

• Design based on Sandia bayonet reactor 
• Reactor consists of two concentric Vycor® tubes with catalyst 

between them 
– Reactant flows up the annulus and products flow out the center tube 
– Heat transfer between inlet and outlet flows provides heat 

recuperation 
– Seals are at reduced temperature 
– Back reaction is minimized as products are cooled away from contact 

with catalyst 
 

 

Tech. Progress 
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Tech. Progress 

Sandia Bayonet Reactor 
originally designed for 
H2SO4 decomposition 

Proposed configuration for dish 
concentrator SO3 decomposition 
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Conceptual High-Temperature Receiver 



Project Partners & Key Personnel 
 Science Applications International Corp. (SAIC)– Prime (Industry) 

• Key Personnel:  Rob Taylor, Roger Davenport 
• Project management & system integration 
• Solar concentrator/receiver evaluation & design 
• Thermal reactor optimization & design 
• Economic evaluation & hydrogen production cost estimates 

 

 University of California, San Diego (UCSD) – Sub (Academia) 
• Key Personnel:  Jan Talbot, Richard Herz 
• Laboratory testing & thermochemical cycle development 
• Chemical plant analysis 

 

 Thermochemical Engineering Solutions (TChemE) - Sub (Industry) 
• Key Personnel:  Lloyd Brown 
• Thermochemical cycle evaluation & analysis 
 

 Electrosynthesis Company, Inc. – Subcontractor (Industry) 
• Key Personnel:  David Genders, Peter Symons 
• Electrolytic cell development & optimization 

Collaborations 
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FY12/FY13 Activities 
• Complete Optimization of Electrolytic Oxidation Process 

– Continue development of better catalysts that lower the over-
potential at the anode & allow operation at high current 
densities 

– Maintain pH at anode and cathode to avoid formation of 
reduced sulfur species  

– Perform 500 hour durability test & cell design improvement 
– Electrochemical cell design optimization and scale-up 

• Complete Evaluation of High-Temperature K2SO4 Sub-Cycle 
– Complete decomposition and gas separation studies 
– Develop bench-scale, pressurized molten salt flow system 

• Economic and Solar System Analysis 
– Continued Refinement of the Solar Field, Aspen PlusÈ, and H2A 

Analyses to Incorporate Chemical Process Modifications 
– Evaluation of receiver materials, storage and control strategies 
 

 
 

 
 

Proposed Future Work 
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Summary  
• Electrolytic SA Cycle Step 

– Improvements to electrocatalysts and high temperature operation have 
achieved cell voltages as low as 0.64 V at 50 mA/cm2 and 0.85 V at 300 
mA/cm2.    

– Long term stability of these materials still needs to be demonstrated. 
– Economic modeling has shown that the minimum annualized cost is at current 

densities <100 mA/cm2. 
• All-Liquid High-Temperature Oxygen Generation  

– Lab results prove the subcycle feasibility; salts have low viscosity and can be 
pumped 

– Thermochemical reactor and Residual Gas Analysis (RGA) equipment used to 
show ammonia and sulfur trioxide can be evolved separately 

– Optimization of process and integration into viable solar concentrating system 
and receivers needs to be further evaluated 

• The Aspen Plus® SA process modeling has been significantly 
improved and is now a robust fully functioning process tool.  

• Aspen Plus® and H2A Continue to be Used to Optimize and Trade-off 
SA Cycle Configurations 

• Solar Configuration Focus is Central Receiver System with Molten 
Salt Storage to Allow 24/7 Operation 

• Next-Phase Program is to Perform the SA Cycle Bench-Scale Tests 
and Prepare for On-sun Tests 
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Technical Back-Up Slides 
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Effect of pH on Anode  
Overpotential/ Cell Voltage 

In acidic media 
• anode reaction:  SO2 + 2H2O  SO4

2- + 4H+ + 2e-   Eo = 0.138 V 
• cathode reaction:       2H+ + 2e-  H2    Eo = 0.000 V 
• overall: SO2 + 2H2O  SO4

2- + 2 H+ + H2    Eocell = -0.138 V  
 

In basic media 
• anode reaction: SO3

2- + 2OH-  SO4
2- + H2O + 2e-  Eo = -0.936 V 

• cathode reaction:    2H2O + 2e-  H2 + 2OH-     Eo = -0.828 V 
• overall:  SO3

2- + H2O  SO4
2- + H2  Eocell = 0.108 V 

Potential for Sulfite Oxidation on Graphite in Various Solutions.
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2M (NH4)2SO3 with 1 M NaOH, pH=12.5

• Oxidation is kinetically slow.  
Potential needed to drive 
current is much higher than 
thermodynamic potential 
(more than 1 V overpotential). 

• Anodic oxidation of sulfite and 
the cathodic hydrogen 
evolution reaction are pH 
dependent. 
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Improvements in Electrocatalysis 

• All data shown is at 300 mA/cm2. 
• Improvements in operating cell 

voltage can be attained by 
improving the catalyst and 
reducing the membrane 
resistance. 

• Improvements in cell design also 
eliminate some of the resistive 
losses in the cell. 
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Efficiency 
• First Law efficiency 

η = -(ΔHºf[H2O] + E)/Q 

• Second Law efficiency 
η = -(ΔGºf[H2O] + E)/Q 

• DOE working definition 
η = -ΔHºf[H2O(g)]/(Q + E/ηe) 
 

where 
η = Plant efficiency 
ΔHºf[H2O] = enthalpy of formation of water 

in standard state = -hhv 
ΔHºf[H2O(g)] = enthalpy of formation of 

water vapor in ideal gas state = -lhv 
ΔGºf[H2O] = Gibbs energy of formation of 

water in standard state  
Q = Total heat input to cycle 
E = Total electrical input to process or if 

negative the electrical output of the 
process 

ηe = Efficiency by which consumed 
electricity is produced 

Note: The First Law efficiency is the efficiency calculated from a heat balance around the total 
plant.  The Second Law efficiency is the efficiency that, for a reversible process would be 
given by Carnot’s Equation.  The DOE working definition was designed to estimate the relative 
ranking of a cycle before the complete plant design was complete. 
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Electrolyte storage 
Compliments 
salt storage 

Higher temperature 
salt provides 

more electricity 

Salt Storage Allows  
24/7 Operation 
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