

Solar High-Temperature Water Splitting Cycle with Quantum Boost

P.I.: Robin Taylor Presenter: Roger Davenport

Science Applications International Corp. San Diego, California

May 16, 2012

PD027

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

- Start Date: 09/01/2007
- End Date: 8/31/2014
- Percent Complete: 45%

- Total project funding
 - DOE share: \$5.4M
 - Contractor share: \$1.4M
- Funding recvd. in FY11: \$750k
- Planned Funding for FY12: \$700k

- U. High-Temperature Thermochemical Technology
- V. High-Temperature Robust Materials
- W. Concentrated Solar Energy Capital Cost
- X. Coupling Concentrated Solar Energy & Thermochemical Cycles
- 2017 H₂ Production Target: \$3.00/kg
- 2017 Cycle Efficiency Target: >35%

Partners

- SAIC (Lead)
 Solar System/Receiver
- UCSD/TChemE
 Thermochemical
 Process
- Electrosynthesis
 Salt Electrolysis

Overall Project Objectives Relevance

- RD&D of the Viability of a <u>New</u> & Improved Sulfur Family Thermochemical Water-Splitting Cycle for large-scale hydrogen production using <u>solar</u> energy
- More Specifically, Overall Project Goals are to:

Evaluate SA water-splitting cycles that employ photocatalytic or electrolytic hydrogen evolution steps and perform lab testing to demonstrate feasibility of the chemistry

- Perform economic analyses of SA cycles as they evolve
- Select a cycle that has high potential for meeting the DOE 2017 cost target of \$3/kg hydrogen and efficiency goal of >35%
- Demonstrate technical feasibility of the selected SA cycle in bench-scale, closed-loop tests
- Demonstrate pre-commercial feasibility by testing and evaluation of a fully-integrated pilot-scale closed-cycle solar hydrogen production plant

Past Year Project Objectives

- Complete Optimization of Electrolytic Oxidation Process
 - Test at higher temp (130°C) & higher pressure regimes
 - Incorporate better catalysts that lower the over-potential at the anode & allow operation over a range of current densities
 - Maintain pH at anode and cathode to avoid formation of reduced sulfur species
 - Perform 500 hour durability test & cell design improvement
- Complete Evaluation of High-Temperature K₂SO₄ Sub-Cycle
 - Study phase equilibria of salt mixtures and identify favorable conditions for the process
 - evaluate salt mixtures to expand operational range
 - Optimization of process parameters and identification of side reactions and by-products
- Economic and Solar System Analysis
 - Continued Refinement of the Solar Field, Aspen Plus, and H2A Analyses to Incorporate Chemical Process Modifications
 - Evaluation of receiver materials, storage and control strategies

Impact on Program Barriers

- <u>U. High-Temperature Thermochemical Technology</u> This project is developing a new thermochemical cycle intended to operate at lower temperatures and be more cost effective than other cycles.
- <u>V. High-Temperature Robust Materials</u> Materials able to operate in the high temperatures and caustic environment of the receivers and reactors are being developed.
- <u>W. Concentrated Solar Energy Capital Cost</u> –System costs are being reduced by optimizing the solar-chemical plant interface.
- X. Coupling Concentrated Solar Energy & Thermochemical Cycles

 The solar field and receivers are being evaluated and designed to
 provide appropriate amounts of energy at necessary temperature levels
 and with appropriate controls.

Approach

Approach

- Develop an Improved Sulfur-family Thermochemical Water-Splitting Cycle with Fewer Phenomenological Hurdles
- Conduct Laboratory Evaluation of all Processes within the Cycle
- Develop Comprehensive Aspen Plus[®] Flowsheet(s) of the Cycle and Modifications
- Perform H2A Analysis of the Flowsheeted Cycle(s) to Compare Design and Operational Approaches
- Design a Solar Collector Field and Receivers to Complement Chemical Process and Maximize Solar/System Efficiency
- Refine Process with Improvements Suggested by Lab Testing, Solar Configuration Studies, and H2A/Aspen Plus Analyses
- Perform Bench-Scale On-Sun Testing of Individual Chemical Processes, then Integrated Pilot-Scale Testing

Milestones

2011 Milestones

- Confirm thermodynamic viability of overall SA cycle with Aspen Plus[®] modeling <u>100% complete</u>
- Electrolytic H₂ production step: <0.8V, >50mA/cm² <u>100% complete</u>
- All-liquid O₂ production step validation <u>100% complete</u>
- Update solar concentrating system to match chemistry- <u>100% complete</u>

2012 Milestones

- Reduce energy consumption of electrolytic H₂ production step 20% by decreasing voltage <u>80% complete</u>
- Demonstrate the molten salt is liquid and will flow (low viscosity) so it is easily pumped-<u>100% complete</u>
- Demonstrate the NH₃ can be separated from the SO₃ by thermal decomposition thus avoiding potentially uneconomic gas separation processes - <u>85% complete</u>
- Develop a fully functioning and converging Aspen Plus modeling of the SA cycle <u>80% complete</u>
- Update solar concentrating system to match chemistry <u>50% complete</u>

2012 Go/No-Go Decision Points

- Demonstrate the viability of the overall SA cycle, with no show stoppers
 - Electrolytic cell with current efficiency >90%, voltage 0.5-0.8V, current density 50-500mA/cm², 500 + hour test
 - Thermodynamic and chemical plant analyses show the cycle can be closed and conversion yields for the O₂ production step are 90% + for all high temperature reactions

Electrolysis Progress

- New catalysts and electrode materials have been tested over a range of current densities and temperatures (80 – 130°C). Promising materials include spinels M_xN_{3-x}O₄ (where M,N=Fe/Ni/Co), Pt/Co and vanadium oxides. To date, Pt/Co has shown the best catalytic performance.
- Quantitative hydrogen production with efficient sulfite oxidation has been verified with divided cells.
- Economic modeling has shown that the minimum annualized cost is at current densities <100 mA/cm².

Electrolysis Progress

Pressure reactor capable of 150 psi is being used to test electrolytic cells at 130°C.

Operation of the cell at 50 mA/cm² allows operation up to 90% conversion of sulfite with only a 60 mV penalty.

Oxygen Generation Half-Cycle

- The all-fluid high-temperature sub-cycle using potassium sulfate-potassium pyrosulfate has been demonstrated by measuring the viscosity of the salts, which is low enough to be pumped
- Thermochemical reactor and Residual Gas Analysis (RGA) equipment is set up at UCSD and data have been collected and analyzed to show ammonia & sulfur trioxide gases can be evolved separately

1 to 5 g samples

RGA Analysis of SaltsTech. Progressfor Oxygen Generation Half Cycle

 $(NH_4)_2SO_4 + K_2SO_4 + 4K_2S_2O_7 + Na_2SO_4 + 4Na_2S_2O_7$ (2 grams)

Molten Salts can be Easily Pumped

 $K_2SO_4 + 4 K_2S_2O_7 + Na_2SO_4 + 4 Na_2S_2O_7$

K₂SO₄ + 9 K₂S₂O₇ + Na₂SO₄ + 9 Na₂S₂O₇

- Viscosity of K₂SO₄ + 4 K₂S₂O₇ + Na₂SO₄ + 4 Na₂S₂O₇ ranged from 0.53 2.2 cP from 419 - 507°C
- Viscosity of K₂SO₄ + 9 K₂S₂O₇ + Na₂SO₄ + 9 Na₂S₂O₇ ranged from 0.29 2.3 cP from 393 510°C
- We measured melting points, densities, and viscosities

Aspen Plus[®] Tech. Progress Process Model Schematic

	H2O	H2	O2	SULFITE	SULFATE	NH3-H2O	NH3H2O-2	K2SO7	K2SO4	SO3	SO2-O2
Г (°С)	25	100	155	155	100	400	65	400	835	835	1000
^o (bar)	1	9	9	9	9	9	9	9	9	9	9
M (kg/hr)	1.04E+05	1.06E+04	1.01E+05	1.75E+06	1.74E+06	1.14E+06	1.14E+06	9.38E+07	9.32E+07	6.19E+05	6.19E+05
Phase	liquid	vapor	vapor	liquid	liquid	vapor	liquid	liquid	liquid	vapor	vapor

Aspen Plus®Tech. ProgressProcess Model Improvements

- Low temperature reactor:
 - A design specification was implemented to regulate flow of salt stream to keep reactor at specified temperature (e.g., 400°C).
- Mid temperature reactor:
 - A design specification was implemented to input molten salt thermodynamics from Lindberg et al¹ paper.
 - This allows for more realistic values of K₂S₂O₇ decomposition at plant temperature (835°C) and pressure (9 bar).
- Electrolyzer:
 - A calculator block was placed to compute the power input needed at 0.8 V and an output concentration of a 2.5 M solution; values supplied by Electrosynthesis Company, Inc.
- Efficiency calculator:
 - A calculator block was placed in the flowsheet to compute the efficiency, as defined by DOE.
- Sensitivity analyses:
 - With the thermodynamics and physical parameter values, sensitivity analyses were conducted to obtain realistic values for plant operating conditions, i.e. pressures, temperatures, compositions.

¹ Lindberg, D., R. Backman, and P. Chartrand. "Thermodynamic Evaluation and Optimization of the (Na2SO4+K2SO4+Na2S2O7+K2S2O7) System." *The Journal of Chemical Thermodynamics* 38.12 (2006): 1568-583. Web.

Alternate Flowsheet

- Complete process at 9 bar
- Recovers heat of solution of SO₂ and NH₃
- Hydrogen compressed to 300 psig
- Rankine power recovery system
- 24/7 production of hydrogen

- Excess electricity produced, or optionally partially used to Joule Boost SO₃ decomposition, simplifying solar system
- Overall efficiency ~40% (JB ~36%)
- Hydrogen only efficiency ~20% (JB ~22%)

Solar Receiver Development

- SAIC cost-share supported two student interns in 2011
- Developed conceptual design of a receiver suitable for the SAIC 115 sq.m. dish concentrator system.
 - Approximately 100kW peak thermal input
 - Sufficient for production of ~0.8 kg/hr of hydrogen
- Design effort focused on the high-temperature SO₃ decomposition reactor
- Design based on Sandia bayonet reactor
- Reactor consists of two concentric Vycor[®] tubes with catalyst between them
 - Reactant flows up the annulus and products flow out the center tube
 - Heat transfer between inlet and outlet flows provides heat recuperation
 - Seals are at reduced temperature
 - Back reaction is minimized as products are cooled away from contact with catalyst

Conceptual High-Temperature Receiver

Sandia Bayonet Reactor originally designed for H₂SO₄ decomposition Proposed configuration for dish concentrator SO₃ decomposition

Collaborations

Project Partners & Key Personnel

Science Applications International Corp. (SAIC)- Prime (Industry)

- Key Personnel: Rob Taylor, Roger Davenport
- Project management & system integration
- Solar concentrator/receiver evaluation & design
- Thermal reactor optimization & design
- Economic evaluation & hydrogen production cost estimates

University of California, San Diego (UCSD) – Sub (Academia)

- Key Personnel: Jan Talbot, Richard Herz
- Laboratory testing & thermochemical cycle development
- Chemical plant analysis

Thermochemical Engineering Solutions (TChemE) - Sub (Industry)

- Key Personnel: Lloyd Brown
- Thermochemical cycle evaluation & analysis

Electrosynthesis Company, Inc. – Subcontractor (Industry)

- Key Personnel: David Genders, Peter Symons
- Electrolytic cell development & optimization

Proposed Future Work

FY12/FY13 Activities

- Complete Optimization of Electrolytic Oxidation Process
 - Continue development of better catalysts that lower the overpotential at the anode & allow operation at high current densities
 - Maintain pH at anode and cathode to avoid formation of reduced sulfur species
 - Perform 500 hour durability test & cell design improvement
 - Electrochemical cell design optimization and scale-up
- Complete Evaluation of High-Temperature K₂SO₄ Sub-Cycle
 - Complete decomposition and gas separation studies
 - Develop bench-scale, pressurized molten salt flow system
- Economic and Solar System Analysis
 - Continued Refinement of the Solar Field, Aspen Plusⁱ, and H2A Analyses to Incorporate Chemical Process Modifications
 - Evaluation of receiver materials, storage and control strategies

Summary

• Electrolytic SA Cycle Step

- Improvements to electrocatalysts and high temperature operation have achieved cell voltages as low as 0.64 V at 50 mA/cm² and 0.85 V at 300 mA/cm².
- Long term stability of these materials still needs to be demonstrated.
- Economic modeling has shown that the minimum annualized cost is at current densities <100 mA/cm².

All-Liquid High-Temperature Oxygen Generation

- Lab results prove the subcycle feasibility; salts have low viscosity and can be pumped
- Thermochemical reactor and Residual Gas Analysis (RGA) equipment used to show ammonia and sulfur trioxide can be evolved separately
- Optimization of process and integration into viable solar concentrating system and receivers needs to be further evaluated
- The Aspen Plus[®] SA process modeling has been significantly improved and is now a robust fully functioning process tool.
- Aspen Plus[®] and H2A Continue to be Used to Optimize and Trade-off SA Cycle Configurations
- Solar Configuration Focus is Central Receiver System with Molten Salt Storage to Allow 24/7 Operation
- Next-Phase Program is to Perform the SA Cycle Bench-Scale Tests and Prepare for On-sun Tests

Technical Back-Up Slides

Effect of pH on Anode Overpotential/ Cell Voltage

160 2M NH4HSO3, 1M (NH4)2SO4, pH=4.9 140 2M (NH4)2SO3, pH=8.9 120 2M (NH4)2SO3 with 1 M NaOH, pH=12.5 Current density mA/cm² 100 80 60 40 20 0 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Potential vs NHE (V)

Potential for Sulfite Oxidation on Graphite in Various Solutions.

- Oxidation is kinetically slow. Potential needed to drive current is much higher than thermodynamic potential (more than 1 V overpotential).
- Anodic oxidation of sulfite and the cathodic hydrogen evolution reaction are pH dependent.

E° = 0.000 V

E° = -0.828 V

In acidic media

- anode reaction: $SO_2 + 2H_2O \rightarrow SO_4^{2-} + 4H^+ + 2e^- E^\circ = 0.138 V$
- cathode reaction: $2H^+ + 2e^- \rightarrow H_2$
- overall: $SO_2 + 2H_2O \rightarrow SO_4^{2-} + 2H^+ + H_2$ E°cell = -0.138 V

In basic media

- anode reaction: $SO_3^{2-} + 2OH^- \rightarrow SO_4^{2-} + H_2O + 2e^- E^0 = -0.936 V$
- cathode reaction: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$
- overall: $SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + H_2$ E°cell = 0.108 V

Improvements in Electrocatalysis

- All data shown is at 300 mA/cm².
- Improvements in operating cell voltage can be attained by improving the catalyst and reducing the membrane resistance.
- Improvements in cell design also eliminate some of the resistive losses in the cell.

Efficiency

- First Law efficiency $\eta = -(\Delta H^{o}_{f[H^{2}O]} + E)/Q$
- Second Law efficiency $\eta = -(\Delta G^{o}_{f[H^{2}O]} + E)/Q$
- DOE working definition $\eta = -\Delta H^{o}_{f[H^{2}O(g)]}/(Q + E/\eta_{e})$

where

- η = Plant efficiency
- $\Delta H^{o}_{f[H^{2}O]}$ = enthalpy of formation of water in standard state = -hhv
- $\Delta H^{o}_{f[H^{2}O(g)]}$ = enthalpy of formation of water vapor in ideal gas state = -lhv
- $\Delta G^{o}_{f[H_{2}O]}$ = Gibbs energy of formation of water in standard state
- Q = Total heat input to cycle
- E = Total electrical input to process or if negative the electrical output of the process
- η_e = Efficiency by which consumed electricity is produced

Note: The First Law efficiency is the efficiency calculated from a heat balance around the total plant. The Second Law efficiency is the efficiency that, for a reversible process would be given by Carnot's Equation. The DOE working definition was designed to estimate the relative ranking of a cycle before the complete plant design was complete.

