
This presentation does not contain any proprietary, confidential, or otherwise restricted information

DOE Hydrogen and Fuel Cells Program Review High-Capacity, High Pressure Electrolysis System with Renewable Power Sources

Dr. David Brengel and Paul Dunn, Avalence LLC DOE Merit Review, 16 May 2012

Project # PD029

Overview / Relevance

DOE Program Overview & Barriers Addressed

Timeline

- Start Date: May 2008
- End Date: Sep 2012
- Percent Complete: 75%

Budget

- Project Funding: \$2.40M
 - DOE share: \$1.92M
 - Cost share: \$0.48M
- Funding received FY11 : \$375K
- Planned Funding for FY12 : \$362K

Barriers Addressed

- Capital Cost
- System Efficiency
- Renewable Power
 Integration

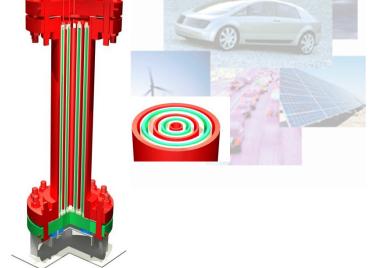
Partners

Avalence: Lead Gas Equipment: Sister-company HyperComp: Composite Wrapping

DEVELOPMENT PROGRAM MILESTONES

Project Milestones	
Description	Status
Determine a Manifolding and Sealing Arrangement for Nested Cell	Complete
1) H_2 and O_2 Gas Separation	(2010)
2) Electrical Connection to Electrodes	1 7/3 1
3) Electrolyte Replenishment	
Determine Containment Penetration Size and Design	Complete
1) Compatible with Composite Wrapped Vessel Constraints,	(2010)
2) Support Cell Electrode Current Magnitudes (>1000 amp)	
3) H_2 and O_2 Gas Off-Take	
4) Electrolyte Replenishment	
Design a Functional Shape of Outer Metal Jacket For Dual Purpose:	Complete
Outer Electrode's Inner Surface	(2011)
Vessel Liner that is the Foundation for Composite Wrap	
Demonstrate the Performance of the Nested Cell Core so that Accurate Projections of	Completed, Partial
Energy Use can Be Integrated into the Cost Model	(Membrane Issue)
Demonstrate the Ability to Implement a Composite Fiber Outer Wrap Over the Nested Cell	Completed
Core	(August 2011)
Produce a Pilot Plant Design For Use as a Basis for a Sound Economic Analysis of Plant	In Process
Fabrication and Operating Cost	
Demonstrate the Operation and Efficiency of the Pilot Plant	Not Yet Started
Laboratory Testing at Avalence	
Field Testing at NREL	
Have a Site Ready to Accept the Completed Plant for Commercial Operation	Completed
> 100 kW of Renewable Power in Place	Ft. Collins
 Sale or Use of the Plant Products Defined 	(December 2011)

What's Different About Avālence?


- Company formed as a spin-off of two established entities
 - Gas Equipment Engineering Corp.
 - Electric Heating Equipment Company
- Avālence Hydrofillers operate via Alkaline Electrolysis (KOH Electrolyte)
- Avalence Hydrofillers operate at a pressure of not less than 2,000 psig – and in some units at much higher pressure
 - Reduced or <u>Zero</u> Compression Power
 - Vastly Reduced Dryer Power / Loss
- Avalence Hydrofiller <u>cells</u> are designed for continuous operation – units in field with 40,000+ hours

Approach: (Background...)

AVALENCE ELECTROLYZER DEVELOPMENT ORIGINAL PROJECT GOALS

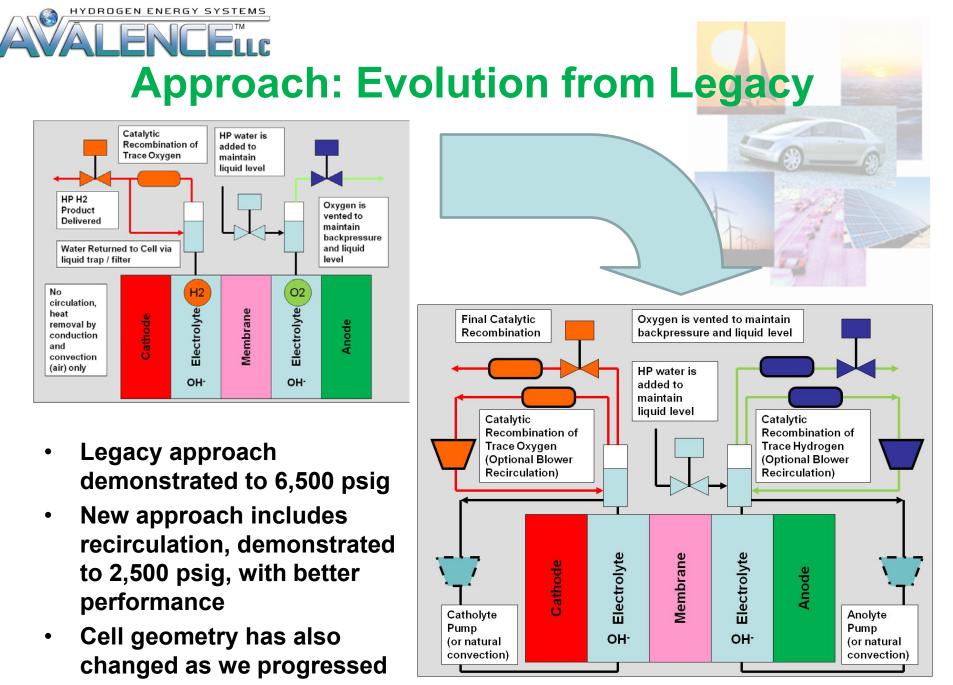
- >Achieving at Least a 15 X Increase in the Gas Production Rate of a Single High Pressure Production Cell
- Demonstrate the High Pressure Cell Composite Wrap Which Enables Significant Weight Reduction
- >Build and Test a 1/10th Scale Pilot Plant
- Perform Economic Assessment for Full Scale Plant (300 kg/day, 750 kW) That Meets DOE 2017 Cost Target of \$3.00/gge

Project Challenges

Design and Fabrication

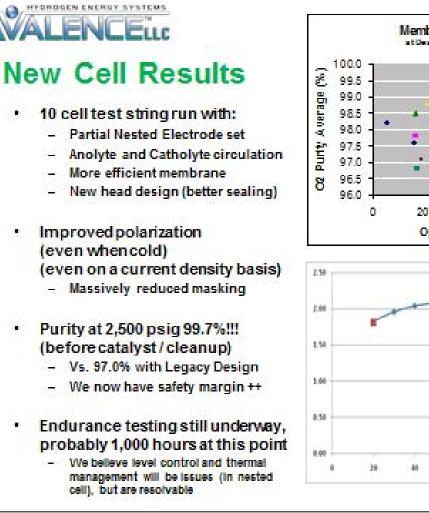
HYDROGEN ENERGY SYSTEMS

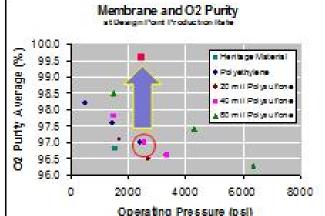
- Large Diameter Membrane Formation
- Membrane to Manifold Sealing
- > Fluid and Power Penetrations
- > Composite Wrapping "Heavy" Cylinder
- Process Control of a Multiple, High-Capacity Cell Array

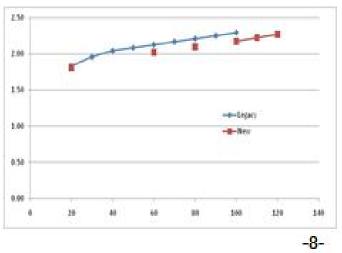

Performance Demonstration

- > Long-Term Operation at 6500 psi (O2 Side Purity)
- > Low/No Leakage Electrical Isolation Hoses at 6500 psi

ALENCE


Design Approach For High-Capacity, High-Pressure Production Cell


- Maintain Cylindrical Pressure Boundary Configuration
- Increase the Diameter By Using a Composite Outer Wrap
- Place Multiple Electrode and Membrane Pairings Inside a Single Cell Body
- Electrodes Act as Two Sided Unipolar Electrodes

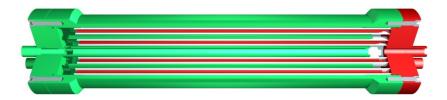


Accomplishments and Progress: (Last Year)

6,500 psig!! (Why It's Hard...)

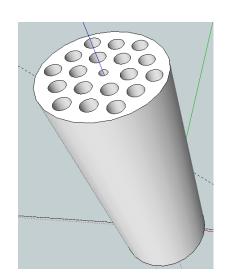
- Electrochemistry still works, but...
 - Bubbles are very small (almost invisible)
 - Velocity of bubbles is low (masking)
 - Since velocity is lower, dwell time in cells increases
 - This by itself can impact purity...
 - More time to react with any electrolyte contaminants
 - Greater time for any side electrolysis reactions (hoses) to accumulate impurity
 - Since diffusion is either steady or increasing with pressure, the additional dwell time amplifies any impurity as a result of diffusion
 - And all other leak paths, which seemed to be trivial before, become monsters
 - NPT threads (we had to remove them from the cell design)
 - Dielectric Hoses (we had multiple attempts before success)
 - Internal cell seals (we have redesigned head on legacy cells, and used those design concepts on large cell)

6,500 psig (Why It's Worth It...)


- 5,000 psig is a standard pressure for industrial vehicles
 - Buses
 - Forklifts
 - Other logistics support vehicles
- Compressor power can be eliminated (replaced by water pumping power)
 - The compressor (multistage especially) is a major source of complexity, unreliability, and maintenance
 - For those few applications with extreme pressures (10,000-20,000 psig), the compressor will be one stage only (diaphragm)
- Since H2 is saturated in water at electrolysis pressure, higher electrolysis pressure means vastly reduced dryer power
 - In some cases, no additional drying is required

Accomplishments and Progress: This Year...

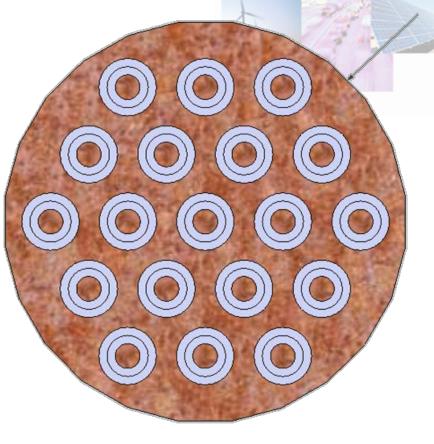
- Built parts of two large cells
 - Stainless version (~1,000 psig)
 - Composite overwrap version (2,800 to 6,500 psig)
 - 6,500 psig with external axial support
- Membrane support in large concentric cells became insurmountable issue – had problem in subscale testing
 - Insufficient stiffness membrane collapse due to VERY small differential pressures which caused blockages and led to cell failure
 - In sufficient space for supporting structure



Accomplishments and Progress: As A Result.

- After the punt, we were forced to alter the large cell structure and get back to membrane diameters / support mechanisms that we know are executable (have been demonstrated in our existing designs)
- Yet, we still have to operate at 6,500 psig, about twice the pressure limit of our existing cell design, and we needed to lower cost
- The decision was made to use smaller concentric cells within a low cost cast metal-metal-composite structure

- We worked with HyperComp Engineering on the original composite work and 8" diameter nested prototype cell
- The composites were good structurally, but too costly, and didn't support electrical conductivity to the degree desired
- We are now working with Yankee Casting, on the alternative


Collaborations: Cell Details

- We are using the ~sixteen of our current design within a single large cell (hence meeting >15x requirement)
 - The cells are no longer thick wall (Schedule 80 or 160) pipe
 - But materials in contact with the process have not changed
- The surrounding low cost structure will take the pressure (hoop) stress
 - A mixture of metal-metal-composite gives the structure the same thermal expansion properties as stainless, and quite high strength – and can be cast at modest temperatures
- Tie rods will still be required for axial (as was the case with the large concentric cell design)

Accomplishments / Collaborations: Cross Section of Notional Concept (Proprietary Details Omitted)

- 19 cells in a 16+" diameter casting shown
- FEA for actual system (with tie rods, passages, etc) to be provided
- Simple hoop stress in cast block is 16,000 psi (perfect load sharing)
- MMC alloy has allowable stress higher than that of 316SS, our legacy material

Future Work: Pilot Plant Design

- Pilot Plant is now based on 10 kg/day, 6500 psig no compressor operation
- Pilot Plant will have 6 cast cell modules
 - Each cell module will have the equivalent of 16 of the latest model 2.5" Avalence cell
 - The 6 modules will provide the equivalent output of 96 of our existing cells
 - Sufficient for 10 kg/day, with margin

Summary

- Efforts are continuing on DOE Large Cell Grant
- Hugely difficult to get to 6,500 psig, with high purity, but we now think we have a path
 - We will also produce both H2 / O2 products
- The nested cell concept remains, but has transitioned from concentric cylinders to bundled cylinders --- composites outer wrap is no longer required, but a mixed metal composite alloy will be used to give the supporting casting similar properties to the supported tubes
 - We will still deliver to DOE at the end of this year
- We would like to acknowledge the patience and guidance of DOE

Contact Information

<u>CEO</u>: Anthony Della Volpe

Operations and Funding ajd@avalence.com

<u>CTO:</u> Paul Dunn Technology Development pmd@avalence.com

<u>PI:</u> David Brengel <u>ddb@avalence.com</u>

1240 Oronoque Road • Milford, Connecticut 06460 • Tel: 203-701-0052 • Fax: 203-878-4123 www.avalence.com -16-