

2012 Hydrogen Program

Annual Merit Review Meeting

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane

Monjid Hamdan

89 Rumford Ave. Newton, Ma. 02466

May 16, 2012

Project ID# PD030

This presentation does not contain any proprietary, confidential, or otherwise restricted information

In 2011 Giner Electrochemical Systems, LLC merged into Giner, Inc.

Overview

Timeline

- Project Start: May 2008
- Project End: April 2012
- Percent Complete: 90

Budget

- Total Project Budget: \$2.49MM
 - DOE Share: \$1.99MM
 - Contractor Share: \$0.51MM
 - Funding Received in FY11: \$280K
 - Planned Funding (FY12): \$278K

Barriers

Hydrogen Generation by Water Electrolysis

- G. Capital Cost
- H. System Efficiency

Technical Targets: Distributed Forecourt Water Electrolysis¹

Characteristics	Units	2006 Status	2015	2017	GES Status (2012)
Hydrogen Levelized Cost ²	\$/kg-H ₂	4.20	3.30	<2.70	3.64
Electrolyzer Cap. Cost	\$/kg-H ₂	1.20	0.70	0.30	0.60 ³ (1.06) ⁴
System Electrolyzer Efficiency	%LHV %HHV	62 (73)	69 (82)	74 (87)	System Under Evaluation⁵

¹ 2007-2009 MYRDD Plan, Electricity cost of \$0.04/kW. ²Production Only (No CSD. CSD costs are expected to add \$2.00/kg). ³ Stack Only. ⁴ Overall system (Stack & BOP). ⁵Stack efficiency measured at 74%LHV (87% HHV)

Partners

- Parker Hannifin Corporation (Industry) System Development
- Virginia Tech University (Academic) Membrane Development

Collaborations

- 3M Fuel Cell Components Program NSTF Catalyst & Membrane
- Entegris Carbon Cell-Separators
- TreadStone Technologies Metal Cell-Separators
- Tokuyama Low-Cost Membrane
- Prof. R. Zalosh (WPI) Hydrogen Safety Codes

Relevance: Project Objectives

Overall Project Objectives

- Develop and demonstrate advanced low-cost, moderate-pressure PEM water electrolyzer system to meet DOE targets for distributed electrolysis.
 - □ Develop high efficiency, low-cost membrane
 - □ Develop long-life cell-separator
 - Develop lower-cost prototype electrolyzer stack & system

Relevance

- Successful development of a low-cost hydrogen generator will enable
 - □ Early adoption of fuel cell vehicles
 - □ Integration of renewable energy sources

FY 2011-12 Objectives

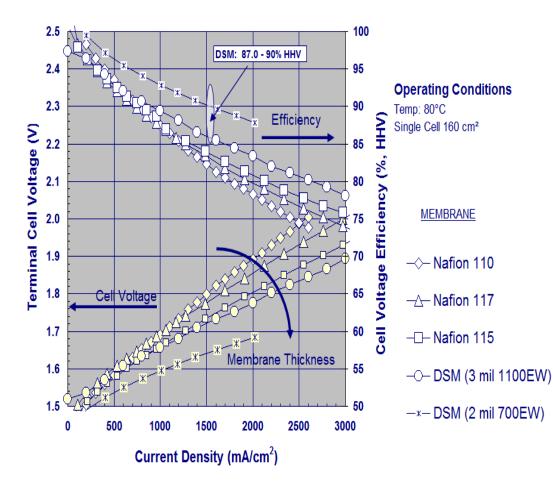
- Complete electrolyzer stack & system assembly
- Evaluate electrolyzer performance & efficiency
- Deliver and demonstrate prototype electrolyzer system at NREL

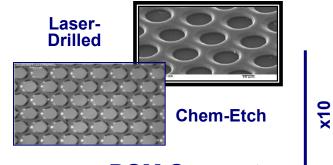
Low-Cost PEM Electrolyzer Stack

GINER

Approach: Overview

Membrane	Cell-Separator	Electrolyzer Stack	Electrolyzer System
 Develop High-Strength, High-efficiency membranes 	 Develop cell-separators with High electrical conductivity Resistant to hydrogen embrittlement Stable in oxidizing environment Low-Cost 	 Reduce parts count/cell Develop innovative designs to reduce Mat'l costs Apply manufacturing methods to reduce costs 	 Reduce BOP capital cost Reduce BOP power consumption-through higher efficiency power electronics Design & test high efficiency H₂ dryer Improve safety and reliability
DSM DSM-PFSA ionomer		 Increase active cell areas Fabricate 0.5kg-H₂/hr 	 Design for high-volume manufacturing Team with large volume
incorporated in an engineering plastic support	Evaluate methods of bonding dissimilar metal films	Stack utilizing low-cost components	commercial manufacturer (Parker-Hannifin)
 Investigate Alternative Low-Cost Membranes Hydrocarbons ionomers Bi-Phenyl Sulfone (VT) PFSA (850EW) membrane (3M) 	 Evaluate non-metal substrate with conductive coating 2011-2012: Investigate alternative Mat'l & technologies for future cost reductions. Includes: nitrided components, low-cost carbon (Entegris), and TreadStone cell-separators 	2011-2012: Design & develop high pressure stack designs	



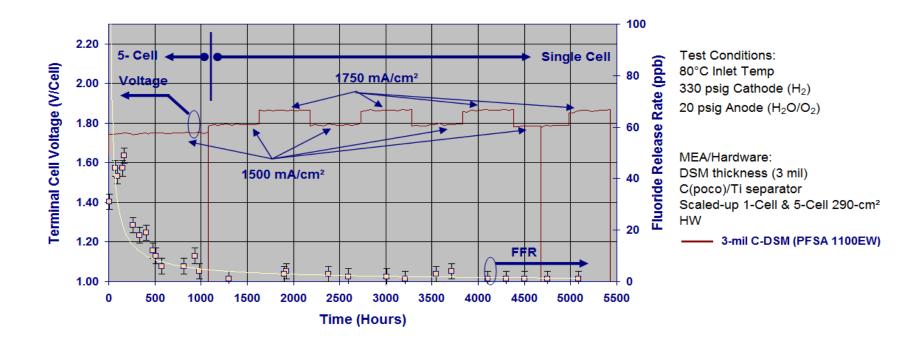

Approach: 2011-12 Milestones

	Go/No Go Decision Points	Progress Notes	%Complete
Membrane	 Scale-up DSM membrane to 290cm² Evaluated in short stack @ 80°C and 1500-1700 mA/cm² 	 Operated Scaled-up membrane in 5-cell for 1000-hours; Single-cell > 5000 hours Use of chemically-etched supports further reducing membrane costs Performance DSM > Nafion[®] 1135 Testing indicates low membrane degradation rate, high life expectancy 	100% (June 2011)
Cell Separator	Scale-up Carbon/Ti cell-separators to 290-cm ²	H ₂ -embrittlement testing confirms longevity of Carbon/Titanium cell-separators	
Cell-separators evaluated in short stack @ 80°C and 1500-1700 mA/cm ²	 Continuing investigation of new Mat'l for future cost reductions. Includes: nitrided components, low-cost carbon (Entegris), and TreadStone cell-separators Testing ongoing - over 2000+ hours 	40%	
stem nent	 Completed 27-cell stack assembly and performance evaluations Completed fabrication of prototype 	Stack fabricated with carbon/Ti cell-separators and DSM in addition to several low cost stack components developed during this program	100% (March 2011)
electrolyzer system capable of p 12 kg-H ₂ /day at 300-400 psi tha potential of meeting DOE's 2012	electrolyzer system capable of providing 12 kg-H ₂ /day at 300-400 psi that has the	System complete, evaluations ongoing	100% (Feb 2012)
	potential of meeting DOE's 2012 cost target for distributed H_2 production of <3.70/kg- H_2	Remaining: System delivery to NREL for evaluation	Expected (May 2012)

Membrane Progress: DSM

DSM Supports

- Developed high efficiency DSM membranes
 - Chem-etched substrates used to lower cost, aid ease of fabrication


 Developed electrode structures with reduced catalyst loadings: 0.7 mg Pt/cm² (Pt/Ir-Anode), 0.4 mg Pt/cm² (Pt/carbon-Cathode)

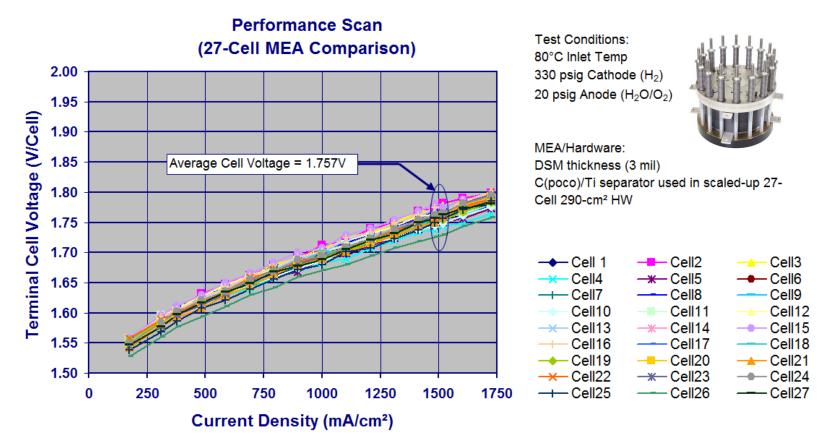
Previously 8 mg Pt/cm²

 Successful testing of 3M NSTF Pt (cathode) and PtIr (anode) catalyst: 3M catalysts are one-order magnitude lower (~0.10 to 0.15 mg Pt/cm² Anode/Cathode)

 Alternative hydrocarbon membranes exhibited high degradation rates **Cost Reduction**

Performance

GINER

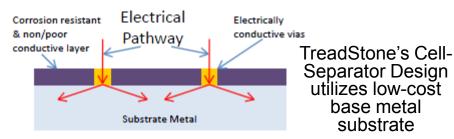

- Completed 1000 Hour Life Test Milestones
 - □ Scaled-up 5-cell (290-cm²)
 - □ 1.73-1.75V (~88% HHV)
- DSM MEA from 5-cell short stack re-assembled into a single-cell stack, total operating time = 5430 hours
- Scaled-up cells include low-cost components used in final stack assembly

Membrane Degradation (Estimated Lifetime)

- F ion Release Rate: 3.7 μg/hr (<10 ppb)</p>
- DSM -1100EW (Stabilized Ionomer): ~55,000 hours

Membrane Progress: 27-Cell Stack Performance

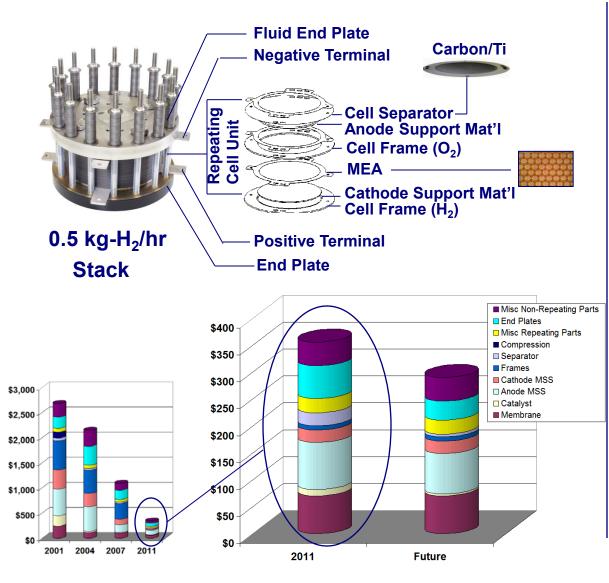
Stack Performance


- Average cell voltage of 1.757V @ 1500 mA/cm² & 80°C
- High Stack voltage efficiency 87% HHV (73.6% LHV) @ 1500 mA/cm²; Energy efficiencty;46.6 kWh/kg
 - Efficiencies in line with DOE 2015 goals
- Voltage variations due to minor differences in membrane thicknesses

Cell-Separator Progress

Carbon/Titanium

- Carbon/Titanium Cell-Separators Scaled-up to 290cm² (Milestone June-2011)
 - Evaluated in cell short stack for 5000+ hours
 - Cell-Separators fabricated with low porosity carbon
 - POCO Pyrolitic Graphite (Surface Sealed)
- Analysis
 - Low hydrogen uptake (embrittlement)
 - Life time estimate > 60,000 hours
- Alternative low-cost materials identified
 - Carbon, Nitrided, & TreadStone Cell-Separators



Cell -S	Cell -Separator			H ₂ uptake (ppm)	
new	new TreadStone		2000+	Ongoing	
new C	/Ti (290-cm	²)	5430	104	
	/Ti (290-cm	²)	1000	105	
С	/Ti (160-cm	²)	500	64	
Z	r/Ti(160-cm	²)	500	140	
ZrN	/Ti (160-cm	²)	500	31	
Dual Layer	Dual Layer Ti (160-cm ²)		500	1105	
	Ti (baseline)		0	≈ 60	
Ti Failure/E	Ti Failure/Embrittlement: ~8000 ppm				
Property	Units		DOE Target C Bipolar lates 2015	GES C/Ti Cell- Separator 2011	
Cost	\$/kW		3	> 10	
Weight	kg/kW		<0.4	0.08	
Electrical Conductivity	S/cm		> 100	>300 (680 Poco)	
Flexural Strength	MPa		>25	86.1 (Poco)	
Contact Resistance t GDL	mΩ. cm ²	1	< 20 @ 150 N/cm ²	17 @ 350 N/cm ²	

Stack Progress: Advancements & Cost Reductions

GINER

Stack Capital Cost (\$/kW_e)

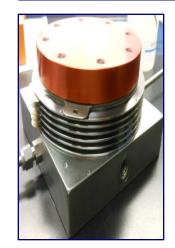
Stack Improvements

- Increased active area (160->290cm²)
- Reduced catalyst loadings 8->1 mg/cm²
- Reduced Part Count from 41 to 10 Parts/Cell-50% labor reduction
- Pressure Pad: Sub-assembly eliminated

- Molded Thermoplastic Cell Frame
- Cell-Separators: Replaced Nb/Ti with Carbon/Ti
 - Frame Thickness reduced (by 30%)
 - Reduces Cathode & Anode Support Mat'l
 - DSM MEAs fabricated w/chem-etch supports- 90% cost reduction
- Carbon Steel End Plate (previously S.S.) - 66% material cost reduction
- The repeating cell unit comprises 90% of electrolyzer stack cost
- Labor Content ranges from 33-50% cost of stack (depending on volumes)
- Implementing current developments expect to reduce cost to <\$300/kW

>60% Cost Reduction in Stack Costs (2007-2011)

System Progress

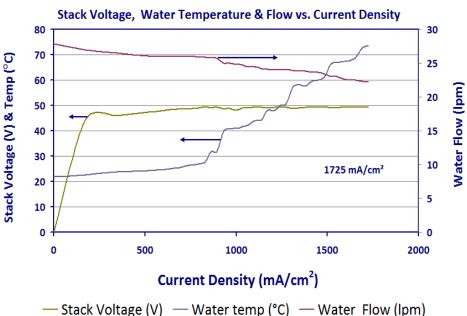

- Assembly: 100% Complete
- System Modifications
- Eliminate stack enclosure (Dome) but ensure safety & future method of high-pressure operation
 - Safety

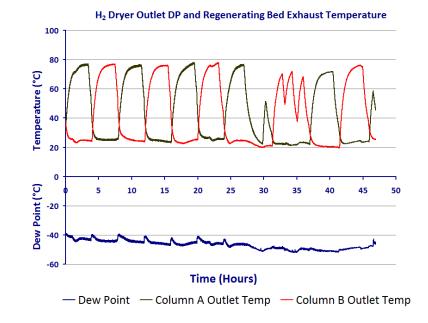
GINER

- Added ventilation fan to satisfy safety Hydrogen Refueling System Safety Codes
- Stack proof pressure tested to 2x operating pressure
- Electrical lockout added to stack chamber
- High-Pressure Operation
 - Initiated fabrication of high-pressure stack design
 - Differential pressure operation
 - Utilizes containment rings
 - 6250 psig pressure test successful
 - Work conducted under DOE program DE-SC0001486 (PD065)

System Specs

Dimensions: 7.20' tall x 6.6' long x 7.84' wide. Water Consumption: 5.75 liters/hr Stack Power Requirement: 24 kW Heat rejection: 3.3 kW **Production Rate** $0.5 \text{ kg H}_2/\text{hr} (-3\% \text{ dryer})$ 2.0 kg-H₂/hr (w/larger Stack & Power Supply) **Operating Pressure** H₂ 350 psig; O₂ atm **Operating Temperature** 80°C Membrane DSM-PFSA. Stack Size 290 cm²/cell. 27 Cells **Stack Current Density** ~1750 to 1900 mA/cm²




Future electrolyzer stack designs utilizing containment rings for high pressure operation

System Progress: Performance

- Accumulated ~ 100 hours of system operation
 - Constant voltage operation
 - □ Start-up ~ 1 hour to full temp. & current density
 - □ Hydrogen Outlet Pressure 300-400 psig
 - Oversized phase-separator to accommodate larger stacks
 - H₂ pressure/volume in separator controlled with higher current density operation

□ H₂-Dryer

- Dual-desiccant dryer to reduce maintenance and desiccant replacement
 - □ Achieved H_2 outlet dew point of -51°C
 - Optimizing H₂-Dryer to achieve
 - -59°C dew point

Stack Current Density

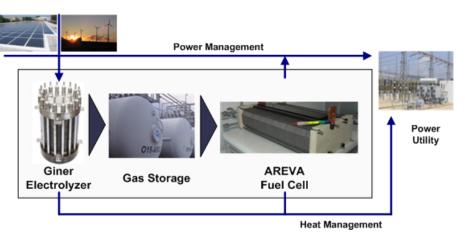
Hydrogen Produc	tion & Losses	Units	1500 mA/cm²	1750 mA/cm²
Stack H2-Production			0.445	0.519
Membrane permeation los	ses (-0.6%)	kg-H _{2/} hr	-0.003	-0.003
Phase-Separator (-0.14%)			-0.0006	-0.0007
H ₂ -Dryer (- 3 to 4%)] Ŷ	-0.018	-0.021
Total H2-Production (@STP)			0.424	0.494
Power Consumpt	ion	Units	1500 mA/cm²	1750 mA/cm²
Electrolyzer Stack			20.6	24.2
DC power supply & control (assuming 94% eff.)		1	+1.23	+1.45
PLC Rack	PLC Rack		0.05	0.05
Electrolyzer Water Pump		kW	0.30	0.30
Heat exchanger fans A & B			0.05	0.05
H2 sensor circuit pump			0.12	0.12
Total Energy Consumption (No Dryer)			22.3	26.2
	Chiller (1.4kW Max)		0.46	0.60
H ₂ -Dryer	Heaters A & B		0.07	0.07
Total Energy Consumption (w/Dryer)			22.9	26.8
Overall Efficiencies		Units	1500 mA/cm²	1750 mA/cm²
Electrolyzer Stack (includes permeation)		g	46.6	46.9
System (No Dryer)		kWh/kg	50.5	50.8
System (w/Dryer)		1 ≩	54.0	54.2

Preliminary system data during initial 100hour run

Power values based on component ratings and intermittent operation of Chiller (compressor) Heater A - on for less than 50% of the dryer cycle. Heater B - as heater A, alternately powered Heat exchanger fans A & B Water pump operating less than max rating Safety ventilation for indoor operation (+0.7kW) ■H₂ enclosure fan A - running at all times •O₂ enclosure fan B- running at all times Higher efficiencies expected in larger (forecourt & centralized) systems Power Supply – 97% ■H₂ Dryers May operate Electrolyzer Stack up to 1900 mA/cm² to compensate pressure drop in phaseseparator (higher H₂ production rate) Higher efficiencies at lower current densities

(higher stack costs)

System oversized to accommodate larger stacks



Recent Market Developments

- Low-cost electrolyzer stack developed during DOE program commercialized and now in-use at Areva Site
 - Operating at 2 sites
 - Customer confirms 1,000 hours at 47 kWh_e/kg
- Target markets are in-line with DOE goals and include
 - Intermittent Renewable Energy Source (RES) integration
 - Backup power for grid outages and load shedding
 - Increase RES ratio and ensure grid stabilization
- Market Drivers
 - U.S. National Defense Authorization Act of FY2007/FY2010:
 - DoD must produce 25% of total energy from renewable energy sources by 2025
 - European Commission¹
 - 2020 Strategy: 20% share of renewable energy in EU energy consumption, with a 10% share in transport
 - 2050 Roadmap calls for a 55 75% share of RES in gross final energy consumption

AREVA's energy storage platform 'GREENERGY BOX' in Corsica, France Utilizing GES Low-Cost Electrolyzer Stack

Modular RFC systems with energy storage from 0.2 to 2MWh

Projected H₂ Cost

Specific Item Cost Calculation

Hydrogen Production Cost Contribution

Tryarogen i Toddotton						
H2A Model Version (Yr)		Rev. 2.1.1 (FY2011)		Rev. 2.1.1 (FY2012)		
Capital Casta	Stack	\$0.60		\$0.60		
Capital Costs	Balance of Plant			\$0.46*		
Fixed 0	Fixed O&M			\$0.59*		
Feedstock Costs \$1.54 minimum @ 39.4 kWh _e /kg-H ₂		\$1.86		\$1.97 (50.5 kWh/kg)		
Byproduct	Byproduct Credits			\$0.00		
Other Variable Costs (including utilities)		\$0.01		\$0.01		
Total Hydrogen Production Cost (\$/kg) (No CSD)		2.86		3.64		
Delivery (H2A (Delivery (H2A CSD default)			1.80		
Total Hydrogen Production Cost (\$/kg)		4.66		5.43		

H2A Model Analysis Forecourt Model

- Design capacity: 1500 kg H₂/day
- Assume large scale production- costs for 500th unit
- Assume multiple stacks/unit
 - Low-cost materials and component manufacturing
- 333 psig operation. H₂ compressed to 6250 psig
- Operating Capacity Factor: 70%
- Industrial electricity at \$0.039/kWh
- 2012 Total production costs of \$3.64/kg
- Progress inline with achieving 2015 Target of \$3.30/kg
- *Additional BOP/O&M costs largely due to hydrogen management components (dryer, chiller, ...)

Future Plans for FY2011-12

- Complete investigation on low-cost components
 - □ Includes Low-cost carbon, nitrided, and TreadStone Cell-separators
- Complete additional ~200 hours system evaluation
 - Optimize operation of system components (H₂-Dryer)
- Continue development of high-pressure (5000 psi), low-cost stacks
- Deliver system to NREL for evaluation

Future Challenges

- Labor is 33-50% cost of stack (depending on volumes)
 - □ Implementing new manufacturing processes to reduce labor costs
 - Unitize cell components (Further reducing parts/cell)
 - Combine cell components at the production level
 - Anode support Mat'l + Separator + Carbon cathode
 - Frame + gasket, Frame + MEA
 - Investigate techniques to mold to exact dimensions of cell components
 - Improve pressure capabilities of stacks (5000 psi or higher)
 - Increase stack active-area to 1ft² (or larger)
 - Automate stack & MEA assemblies

Summary

□ Membrane: Demonstrated Reproducibility, Durability, and Efficiency

- Demonstrated high efficiency DSM membranes (single-cell, 5-cell, and 27-cell stacks)
- Demonstrated 5000+ hrs lifetime of scaled-up (290 cm²) DSM membrane at 80°C
- Cell voltage efficiency 87%HHV (@ 1500 mA/cm²) meeting 2015 DOE targets
- Stack Efficiencies: 46.6 kWh_e/kg-H₂ @ 1500 mA/cm²

Cell Separator & Component Development:

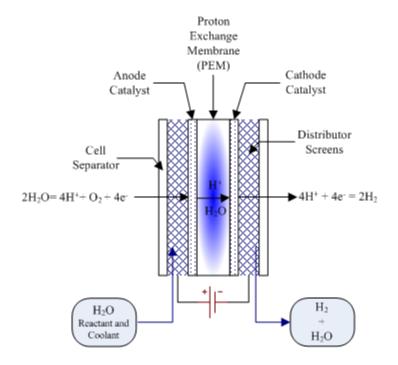
- Demonstrated 5000+ hrs lifetime of scaled-up cell-separators
- Demonstrated significantly reduced hydrogen embrittlement with carbon/Ti separators
 - □ Expected cell-separator lifetime in the range > 60,000 hours

□ Scaled-Up Stack:

- Stack assembly 100% complete
- Significant progress made in stack cost-reduction (cell-components, membrane, & catalyst)
 - □ 60% reduction in stack cost (from 2007 to 2011)

□ System Development:

- System complete, evaluation ongoing
- Delivery to NREL expected in May 2012



AMR Technical Slides

Technical Slide 1-

GINER

Technical principle of the PEM-based water electrolysis

PEM Cell Reactions $H_2O \rightarrow 2H^+ + 2e^- + \frac{1}{2}O_2$ Anode half-cell reaction $2H^+ + 2e^- \rightarrow H_2$ Cathode half-cell reaction $H_2O + 2e^- \rightarrow H_2 + \frac{1}{2}O_2$ Overall reaction

Water permeation through PEM

~3H₂O/H+

Technical Slide 2- Efficiency

Power Efficiency

The dissociation of 1 mole of liquid water to produce a mole of hydrogen at 25°C requires 285.8 kJ of energy. The conversions made below show the HHV in terms of kWh/kg from 285,840 Joules per mole (J/mole);

 $285,840 \frac{J}{\text{mol}} * \frac{1\text{mol}\,\text{H}_2}{2.0158\,\text{g}} * \frac{1000g}{1kg} = 141,799,781 \frac{J}{kg} = 141.8 \frac{MJ}{kg}$ $141.8 \frac{MJ}{kg} * \frac{1watt - \sec}{J} * \frac{1kW}{1000w} * \frac{1hr}{3600 \sec} = 39.4 \frac{kWh}{kg} (100\%, HHV)$

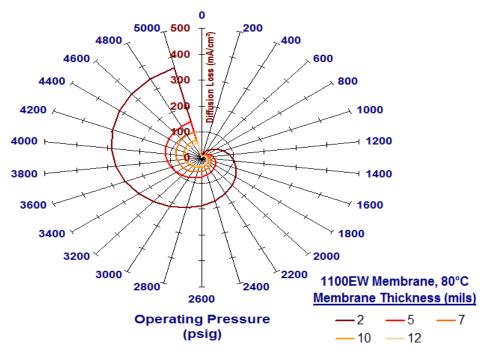
Voltage Efficiency

$$E_{\circ} = \frac{\Delta_{f} H^{\circ}}{zF} = \frac{\frac{285,840 \frac{J}{mol}}{2*96,485 \frac{C}{mol}} = 1.48 \frac{Volts}{cell}$$

The Nernst potential (Vn) adds an additional term to the standard potential (EO) to account for the electrochemical compression energy required to pressurize the gases in the stack.

$$V_{n} = E_{O} + \frac{RT}{nF} \ln \left(\frac{P_{H_{2}} P_{O_{2}}^{\frac{1}{2}}}{P_{H_{2}O}} \right)$$

@ 27 atm and 80°C


$$V_{n} = 1.48 + \frac{8.341(353)}{2(96485)} \ln\left(\frac{(27)\sqrt{1.3}}{1.3}\right) = 1.48 + 0.048 = 1.528 V$$

Stack Efficiency =
$$\frac{\text{Ideal Stack Potential}}{\text{Actual Stack Potential}} = \frac{1.528}{1.757}(100) = 87\%(HHV)$$

Hydrogen Production (Current Efficiency)

The theoretical rate of hydrogen production in an electrolyzer stack for 1 Amp load;

 $dN/dt = i/nF = 1A/(2e^{-*} 96487C/mole) = 5.18 \times 10^{-6} \text{ mol } H_2/\text{sec.}$ From the ideal gas law at STP (273K,1 atm) $V_{H2} = nRT/P = (5.18 \times 10^{-6} \text{ mol } H_2/\text{sec}) \times (60\text{s/min}) \times (1000 \text{ cm}^3/\text{L}) \times (0.0821\text{L.atm.mol}-1.\text{K}-1) = 6.96 \text{ cm}^3/\text{min} (H_2 \text{ per Amp})$

Losses of H_2 production (faradaic inefficiencies) are indicative of gas permeation through membrane. Dependent on membrane thickness and pressure;

