# Directed Nano-scale and Macro-scale Architectures for Semiconductor Absorbers and Transparent Conducting Substrates for Photoelectrochemical Water Splitting

Prof. Thomas F. Jaramillo, Arnold Forman, Zhebo Chen, Blaise Pinaud, Linsey Seitz, Ariel Jackson

> Dept. of Chemical Engineering Stanford University

> > Project ID: PD033

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

The US DOE PEC Working Group approach towards efficient and durable solar H<sub>2</sub> production

Approach 1:

**Efficiency Crystalline** 

**Material Systems** 

Efficiency



#### Durability

## Overview

#### <u>Timeline</u>

- Start Date: Dec 2008
- End Date: Sep 2012\*
- 90% complete

### **Budget**

- Total project funding
  - DOE \$388k
  - Contractor \$64k
- Planned funding in FY12
  - \$130k
- Funding for FY13
  - \*Project continuation and direction determined annually by DOE

#### **Barriers**

- Y. Materials Efficiency
- Z. Materials Durability
- AA. PEC Device and System Auxiliary Material

#### **Targets**

| Semiconductor | 2006   | 2013     | 2018     |
|---------------|--------|----------|----------|
| Bandgap       | 2.8 eV | 2.3 eV   | 2.0 eV   |
| Efficiency    | 4 %    | 10 %     | 12 %     |
| Durability    | N/A    | 1000 hrs | 5000 hrs |

### **Collaborations**

- NREL, U. Louisville, U. Hawaii, UNLV, UCSB, MV Systems, The PEC WG
- Project Lead: Thomas F. Jaramillo

## **Project Relevance**

The **main objective** of this project is to develop 3rd generation materials and structures with new properties that can potentially meet DOE targets (2013 and 2018) for usable semiconductor bandgap, chemical conversion process efficiency, and durability.

| Table 3.1.10. Technical Targets: Photoelectrochemical Hydrogen Production <sup>a</sup> |       |               |               |             |                          |
|----------------------------------------------------------------------------------------|-------|---------------|---------------|-------------|--------------------------|
| Characteristics                                                                        | Units | 2003 Status   | 2006 Status   | 2013 Target | 2018 Target <sup>b</sup> |
| Usable semiconductor bandgap <sup>c</sup>                                              | eV    | 2.8           | 2.8           | 2.3         | 2.0                      |
| Chemical conversion process efficiency (EC) <sup>d</sup>                               | %     | 4             | 4             | 10          | 12                       |
| Plant solar-to-hydrogen efficiency (STH) <sup>e</sup>                                  | %     | not available | not available | 8           | 10                       |
| Plant durability <sup>f</sup>                                                          | hr    | not available | not available | 1000        | 5000                     |

To date, there are no known materials that simultaneously meet these DOE targets.

# **Relevance: Project Objectives**

HSEs: A Platform Technology with Broad Application to PEC Materials
 [Applied Science/Engineering → DOE EERE]

- <u>Barrier AA</u>. To develop and employ <u>photoelectrode substrates</u> with:
  - Macro-porosity (> 50 nm),
  - High surface area
  - Optical transparency
  - High electrical conductivity
  - Physical robustness
- **<u>Barrier Y.</u>** Improve <u>efficiency</u> of charge transport limited material
  - Support charge transport limited PEC material (e.g.,  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>) on substrate to demonstrate efficacy
- MoS<sub>2</sub>: Developing 3<sup>rd</sup> Generation PEC Materials
   [Fundamental Science/Engineering → DOE BES EFRC]
  - <u>Barrier Y</u>. To develop <u>efficient</u> PEC materials consisting of nanostructured  $MoS_2$  with:
    - A wider bandgap
    - Improved band alignment with respect to H<sub>2</sub> and O<sub>2</sub> evolution potentials
    - Improved surface catalysis for HER
  - <u>Barrier Z</u>. To develop <u>durable</u> MoS<sub>2</sub> photo-cathodes



High solar H<sub>2</sub> production rates!

**Take-home message**: A PEC substrate that is transparent, conducting, high surface area, and macroporous is critical for engineering PEC devices. It allows for increased vertical loading of nanomaterials with minimized semiconductor charge transport distances.

#### Relevance: Improving PEC Efficiency with Nanostructured MoS<sub>2</sub>



#### Approach: Fabricate HSE Support, Merge with PEC Nanomaterials



# Approach: Milestones

| Milestones                                                           | Progress Notes                                                                                 | Comments                                                   | % Comp. |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------|
| HSE Design and Synthesis                                             | Novel, template free ITO<br>scaffold has been<br>fabricated                                    | Large area, high<br>throughput synthetic<br>method         | 100 %   |
| HSE Characterization                                                 | RF values synthetically tunable up to ~100                                                     | Broad pH, thermal & physical stability                     | 100%    |
| Integrate PEC Materials with HSE                                     | Ti:Fe <sub>2</sub> O <sub>3</sub> , MnO <sub>x</sub> and<br>MoS <sub>2</sub> coatings underway | Interfacial engineering<br>for improved charge<br>transfer | 70%     |
| <b>Optimize MoS<sub>2</sub> for PEC Performance &amp; Efficiency</b> | Developed quantum<br>confined MoS <sub>2</sub><br>nanoparticles                                | Requires further<br>optimization of ligand<br>chemistry    | 70%     |

### Previous Work: Prototype HSE & Electrocatalytic H<sub>2</sub> Evolution on Nanostructured MoS<sub>2</sub>

#### HSE - Doctor Blade Films

- · Novel synthetic method, but limited device area
- · Mediocre spatial homogeneity
- Limited e-chem stability window need for improved device architecture







**Take-home message**: Previously, we demonstrated prototype transparent HSEs as well as promising results on electrocatalytically active  $MoS_2$  nanostructures for  $H_2$  production

DOE EERE Hydrogen Program AMR 2012

# Technical Accomplishment: Synthesis of a photo-electrochemical substrate/scaffold

#### Post-deposition heat treatment **Precursor slurry:** 1) 300 °C @ 0.3 °C/min in air • ITO powder (9:1, In:Sn) Controlled condensation of sol-gel Indium (III) acetylacetonate 2) 450 °C @ 10 °C/min in air • Tin (IV) chloride Induce crystallization of gel • Sol precursor ratio, 9:1, In:Sn HCI 3) 450 °C @ 10 °C/min in N<sub>2</sub> • EtOH Create oxygen defects to increase conductivity Spray deposition A Novel Synthetic process (airbrush) • Simple sol-gel prep Template-agent free • Tunable: RF, porosity, light scattering 100 nr Spatially homogeneous • Scalable to m<sup>2</sup> panels Transferable to other TCOs A.J. Forman, Z. Chen, T.F. Jaramillo, ITO adhesion lave "Macro-Structured High Surface Area Transparent Conductive Oxide Electrodes Fabricated via Low Cost, Scalable, Solution Phase Routes" • Provisional U.S. Patent filed September 2011. Dense ITO film Manuscript submitted, March 2012. Glass

**Take-home message**: Milestone achieved - Developed a scalable low-cost synthetic route with facile spray processing to produce a fully tunable, high surface area, transparent electrode.

#### Technical Accomplishment: Highly Conductive & Transparent HSE Devices



**Take-home message**: HSE structures have conductivities and optical properties that can allow for substantial improvements in PEC efficiency.

#### Technical Accomplishment: Quantification of HSE Surface Area



**Take-home message**: We have hit our target of developing a photo-electrochemical substrate that is transparent, conducting, high surface area, and macroporous.

Technical Accomplishment: HSE for Enhanced Optical Absorption and Electrochemical Accessibility of Ultra-thin Films – MnO<sub>x</sub> on the HSE

#### Ultra-thin films by Atomic Layer Deposition (ALD) on the HSE platform

- High IQE ultra-thin layers
- High ionic transport
- High Loading
- High optical density



**Take-home message:** HSEs couple high material loading with high IQE to yield superior devices. Simultaneously large RF values, high conductivity, transparency and macro-porosity are uniquely enabling HSE characteristics.

#### Technical Accomplishment: Validation – using HSE Substrates to Enhance Hematite PEC Device Performance

#### Hematite on HSE: Preliminary Results - Performance enhancement vs. planar substrates - Superior loading $\rightarrow$ high OD Same $Fe_2O_3$ loading (ug/cm<sup>2</sup><sub>device</sub>) Inhibits delamination of thick films Same Fe<sub>2</sub>O<sub>3</sub> film thickness Hematite/ITO interfacial engineering - Preliminary data on SiO<sub>x</sub>, TiO<sub>x</sub> layers show **Planar -** Thick Planar - Thin HSE photocurrent enhancement **PEC Performance** 0.4 J (mA/cm<sup>2</sup>) **HSE** Acellent adhes . 0.2 Planar-Thin Planar-Thick No Siana 0.0 0.8 1.0 1.2 1.6 1.4 V vs. RHE

**Take-home message**: Nanostructured PEC films benefit from HSE support. The HSE permits far higher loadings (OD) of absorber material while preserving electrical contact.

DOE EERE Hydrogen Program AMR 2012

Technical Accomplishments: Bandgap Engineering of MoS<sub>2</sub> nanoparticles



|       | 2 nm   | 5             | nm   | <u>5 nn</u>       | <u>1</u> . <u>5 n</u> r | n<br>n |
|-------|--------|---------------|------|-------------------|-------------------------|--------|
| x = 2 | 2.4 nm | <b>x</b> = 4. | 8 nm | <b>x</b> = 7.8 nn | n 🛛 🛛 🗖 = 8.3 nn        | n      |
| s = ( | 0.7 nm | s = 1.        | 2 nm | s = 2.4 nn        | n s = 1.7 nn            | n      |
|       |        |               |      |                   |                         |        |
|       | Size   | by            | Absc | orbance Onse      | t Indirect              |        |
|       | TE     | M             |      | α                 | Tauc                    |        |
|       |        |               |      |                   | (ahv) <sup>1/2</sup>    |        |
| •     | 2.4 r  | าฑ            |      | 1.8 eV            | 1.4 eV                  |        |
|       | 4.8 r  | าท            |      | 1.7 eV            | 1.3 eV                  |        |
|       | 7.8 r  | าฑ            |      | 1.5 eV            | 1.1 eV                  |        |
|       | 8.3 r  | าฑ            |      | 1.2 eV            | 0.9 eV                  |        |
|       |        | 1             |      |                   |                         |        |

Blueshift in bandgap with decreasing size.

**Take-home message**: Nanoparticles of approx. 2-3 nm diameter exhibited a bandgap enlargement from 1.2 eV (bulk) to approx. 1.8 eV, very close to the 2013 and 2018 DOE targets of 2.0 eV - 2.3 eV.

### Technical Accomplishment: Synthesis of a Mesoporous MoS<sub>2</sub> Double Gyroid



Take-home message: We developed a route to synthesize a nano-structured double-gyroid film of MoS<sub>2</sub>.

# Technical Accomplishment: Highly Stable H<sub>2</sub> Evolution Electrocatalysis by Core-shell MoO<sub>3</sub>-MoS<sub>2</sub> Nanowires



 Zhebo Chen, Dustin Cummins, Benjamin N. Reinecke, Ezra Clark, Mahendra K. Sunkara, and Thomas F. Jaramillo, "MoS<sub>2</sub> Coated MoO<sub>3</sub> Nanowires: Active, Stable, and Earth-abundant Catalysts for Hydrogen Evolution in Acid" *Nano Letters*, Vol. 11, pp. 4168-4175, 2011.

**Take-home message:** The core-shell nanowires are **100% stable** even after 10,000 cycles in sulfuric acid, and the conformal  $MoS_2$  completely protects the otherwise unstable  $MoO_3$  core.

# Technical Accomplishments: Significant Enhancement in Electrocatalytic Activity for MoS<sub>2</sub> Nanostructures



**Take-home message:** Our MoS<sub>2</sub> nanostructures are the most active non-precious metal catalysts for hydrogen evolution in acidic electrolyte ever developed

# Technical Accomplishments: PEC Characterization of Nanostructured MoS<sub>2</sub>



**Take-home message**: Nano-MoS<sub>2</sub> is PEC active with the correct band structure, and future incorporation into a HSE will allow us to achieve high efficiencies

### Proposed Future Work: Enabling Performance Gains for Charge-Transport Limited Materials

#### **Future Work**

- Expand HSE composition to AZO, FTO and other TCOs
  - Facile spray processing is amenable to many materials
- Perfect HSE/absorber contact via interfacial engineering
  - Monolayers of SiOx, TiOx, etc. to reduce traps and enhance film growth
- Integrate MoS<sub>2</sub> and other nanomaterials with HSE



Take-home message: Future prospects are exciting in integrating PEC materials with the HSE.

## Collaborations

- University of Louisville, Kentucky
  - Collaboration with Prof. Mahendra Sunkara to develop core-shell MoO<sub>3</sub>-MoS<sub>2</sub> nanowires for PEC.
    - supported by DOE H<sub>2</sub> program.
- UNLV
  - Collaboration with Prof. Clemens Heske for bulk and surface materials characterization by electronic spectroscopies
    - supported by DOE H<sub>2</sub> program.
- NREL, UCSB, UNLV, U. Hawaii.
  - Development of standardized testing and reporting protocols for PEC material/interface evaluation.
    - all supported by DOE H<sub>2</sub> program.
- NREL, UCSB, U. Hawaii, Directed Technologies, Inc.
  - Techno-economic analysis of PEC Hydrogen vs. PV-Electrolysis Hydrogen.
    - all supported by DOE H<sub>2</sub> program.
- MV Systems, Inc.
  - Surface modifications of their triple-junction Si-based devices.
    - supported by DOE H<sub>2</sub> program.

Active collaborations take place via frequent (e.g. weekly, monthly) conference calls as well as meetings in-person during DOE ~ quarterly working group meetings.

## Summary

| • Relevance                                                          | <ul> <li>The 2 objectives of the project are to:</li> <li>#1. Develop PEC substrates consisting of macroporous, high surface area, transparent, conducting oxides upon which PEC materials can be loaded.</li> <li>#2. Develop new PEC materials based on nano-structured MoS<sub>2</sub> that can potentially meet DOE performance targets (2013 and 2018).</li> </ul>                               |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Approach                                                           | <ul> <li>#1. The approach is to use scalable, solution-based spray processing to create large area electrodes with porosity on the micron scale.</li> <li>#2. The approach is to nanostructure MoS<sub>2</sub> in order to tailor its bulk and surface properties for PEC.</li> </ul>                                                                                                                 |
| <ul> <li>Technical<br/>Accomplishments<br/>&amp; Progress</li> </ul> | <ul> <li>#1. We developed and characterized a robust HSE scaffold that is transparent, conducting and macroporous with a tunable surface area. Initial HSE thin-film device construction shows significant performance gains.</li> <li>#2. We have developed MoS<sub>2</sub> nanostructures that are highly active H<sub>2</sub> evolution catalysts, however PEC efficiencies remain low.</li> </ul> |
| Collaborations                                                       | Collaborations with the U. Louisville, NREL, UCSB, U. Hawaii, UNLV, MV Systems,<br>and Directed Technologies, Inc. have been fruitful in terms of material<br>development and exchange of knowledge/expertise.                                                                                                                                                                                        |
| • Future Research                                                    | <ul> <li>Expand HSE composition to AZO, FTO and other TCOs.</li> <li>Perfect HSE/absorber contact via interfacial engineering.</li> <li>Integrate MoS<sub>2</sub> and other nanomaterials with HSE.</li> </ul>                                                                                                                                                                                        |

# **Technical Back-Up Slides**

 $(\max of 5)$ 

# **Relevance: Technology Barriers**

Table 1. Materials-related "Technology Barriers" for successful PEC water-splitting: material class challenges and strengths for HSE substrates and MoS<sub>2</sub>.

| Barrier                                                      | Challenges                                                                                                                                                                                                                                                                              | Strengths                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>AA.</u><br>PEC Device and<br>System Auxiliary<br>Material | <ul> <li>Need a transparent, conducting, high<br/>surface area scaffold for<br/>nanostructured absorbers.</li> </ul>                                                                                                                                                                    | <ul> <li>Enable/enhance charge transport limited PEC materials.</li> <li>Maximize solar H<sub>2</sub> production:<br/>EQE = IQE x OD</li> </ul>                                                                                                                                                                                        |
| <u>Y.</u><br>Materials<br>Efficiency                         | Oxides for PEC:<br>- Charge transport limitations require<br>thin films<br>- Low absorption coefficients                                                                                                                                                                                | <ul> <li>Stable, abundant, low cost, synthetically<br/>facile</li> <li>Increased IQE for thin films</li> </ul>                                                                                                                                                                                                                         |
|                                                              | <ul> <li><u>MoS<sub>2</sub> for PEC:</u> <ul> <li>Bandgap is too small at 1.0-1.2 eV</li> <li>Indirect bandgap</li> <li>C. Band too low w.r.t. E<sup>0</sup><sub>H+/H2</sub></li> <li>Relatively low charge mobility along the c-axis (0.1 cm<sup>2</sup>/V*sec)</li> </ul> </li> </ul> | <ul> <li>Absorbs large fraction of solar photons.</li> <li>Nanostructuring enlarges bandgap and shifts<br/>C. Band above E<sup>0</sup><sub>H+/H2</sub></li> <li>High charge mobility along the basal plane (&gt;<br/>100 cm<sup>2</sup>/V*sec)</li> <li>Excellent hydrogen evolution catalysis for<br/>nano-MoS<sub>2</sub></li> </ul> |
| <u>Z.</u><br>Materials<br>Durability                         | <ul> <li>n-MoS<sub>2</sub>: unstable photo-oxidation of<br/>the sulfide surface</li> </ul>                                                                                                                                                                                              | <ul> <li>p-MoS<sub>2</sub>: 1000 hrs photostability</li> <li>nano-MoS<sub>2</sub>: Stable H<sub>2</sub> production &gt;10,000 cycles</li> </ul>                                                                                                                                                                                        |

### Backup Slide: Hematite Film Morphology



DOE EERE Hydrogen Program AMR 2012

T. F. Jaramillo, Stanford University

### Backup Slide: Capacitive Behavior of MnO<sub>x</sub>

