

Biological Systems for Hydrogen Photoproduction

2012 Annual Merit Review and Peer Evaluation Meeting

Maria L. Ghirardi, PI National Renewable Energy Laboratory

May 16, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Project start date: FY00
- Project end date: 9/30/2012*
- Percent complete: 80%
 *Project continuation and direction determined annually by DOE

Budget

- Total project funding: \$9,951K
- Funding received in FY11: \$750K
- Planned funding for FY12: \$600K

Barriers

CHLAMYDOMONAS

- Barriers addressed:
 - Rate of H₂ production (AH)
 - Continuity of H₂ production (AI)
 - Engineering issues (AJ)
- Targets (see next page)

 light conversion efficiency rates of production duration of production

Partners

- Dr. Sergey Kosourov, Institute of Basic Biological Problems, RAS, Pushchino, Russia
- Dr. Eric Johnson, Johns Hopkins University

Relevance/Objectives

• **General goal:** Develop photobiological systems for large-scale, low cost and efficient H₂ production from water (barriers AH, AI and AJ).

	Characteristics	Units	2003	2006	2013	2018
					Target	Target
	Utilization efficiency of incident solar energy	%	10	15	15	20
	Efficiency of incident light energy conversion of water to hydrogen	%	0.1	0.1	2	5
	Duration of continuous H ₂ photoproduction	Time units	NA	NA	30 min	4 h
)	O ₂ tolerance (half-life in air)	Time units	1 sec	1 sec	10 min	2 h

• Specific tasks:

Task 1: Address the O_2 sensitivity of hydrogenases that prevent continuity of H_2 photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions.

Task 2: Utilize a limited STH H_2 -producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H_2 photoproduction, including low rates due to biochemical and engineering mechanisms.

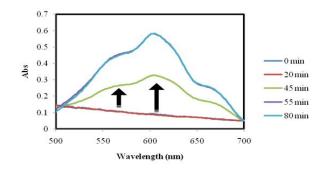
Approach/Milestones – Task 1

Task 1: Address the O_2 sensitivity of hydrogenase by (a) using targeted random mutagenesis to generate O_2 -tolerant hydrogenases; and (b) introducing the gene encoding for a more O_2 -tolerant hydrogenase from *Clostridium acetobutylicum* into the photosynthetic alga *Chlamydomonas reinhardtii*; measure its linkage to water oxidation and *in vivo* O_2 tolerance.

Task 1	Milestone	Due date	Status
3.3.2	Go/NoGo: Assess progress in the random mutagenesis approach to evaluate whether to further pursue this approach in FY12.	12/31/11	Completed: NoGo
3.3.5	Demonstrate expression of an active Ca1 in a C. reinhardtii hydrogenase-less background and characterize O ₂ -sensitivity of light-driven H ₂ production.	9/30/12	80% completed

Dr. Paul King, NREL

Dr. Kath Ratcliff, NREL

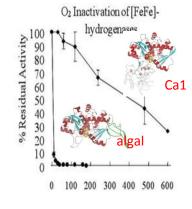


Dr. David Mulder, NREL

Task 1 – Random mutagenesis – completion of milestone 3.3.2 – NoGo.

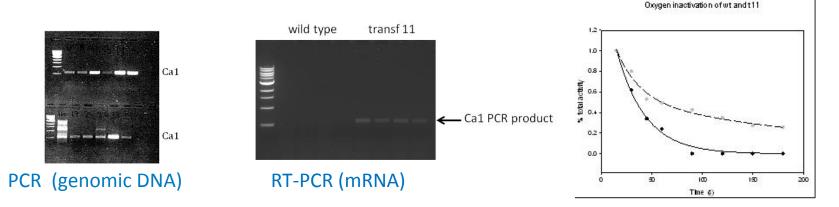
We re-evaluated the effects of O_2 on the H_2 -production activity of the more O_2 -tolerant *Clostridium acetobutylicum* Ca1 hydrogenase and concluded that (a) a targeted random mutagenesis effort would require more funding than currently available through the FCT Program; (b) we need to first validate that higher in vitro O_2 tolerance translates into higher *in vivo* O_2 tolerance. We decided, instead, to focus on the expression of Ca1 in *Chlamydomonas reinhardtii* (see next slide).

Progress before the Go/NoGo milestone included:

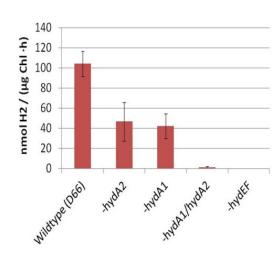

(a) Development of a chemochromic high-throughput assay for H_2 production in micro-wells, based on methyl viologen reduction by H_2 .

Ca1 whole cell activity (nmol		
Strain	H ₂ /min/mL)	
Rosetta-2 (DE3)	1625	
MC4100 (DE3)	1194	
MW1001 (DE3)	173	
Deckground control rates 16 pm of 11 /min/ml		

Background control rate: 16 nmol H₂/min/mL

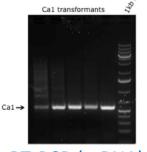

(b) Selection of a *E. coli* strain lacking native hydrogenase activity and expressing Ca1 at high levels.

Task 1 – Expression of Ca1 in *C. reinhardtii* and measurement of *in vivo* O_2 tolerance – towards completion of milestone 3.3.5.


Justification: the Ca1 hydrogenase is 2 orders of magnitude more O_2 -tolerant than the algal hydrogenase *in vitro*.

Previous work: we successfully expressed Ca1 in a wildtype strain of *C. reinhardtii* that contained native hydrogenase activity; O_2 -inactivation kinetics were biphasic, suggesting the presence of a more O_2 -tolerant enzyme in combination with the native hydrogenases.

Task 1 (cont.) – Expression of Ca1 in *C. reinhardtii* and measurement of *in* vivo O_2 tolerance – towards completion of milestone 3.3.5.


Current Progress: A double hydrogenase knock-out mutant was isolated under BES funding and served as a host for expression of Ca1 behind the psaD promoter.

Meuser et al., Bioch. Biophys. Res. Comm. 417, 704 Ca1 transformants

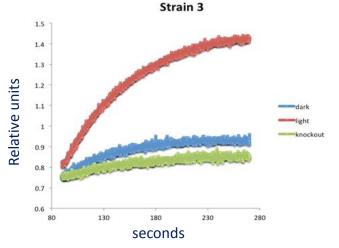


Figure 1. PCR of genomic DNA from various Caltransformants PCR (genomic DNA)

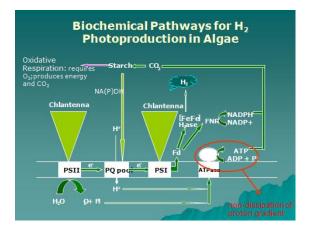
RT-PCR (mRNA)

Light-dependent H₂ production was detected!

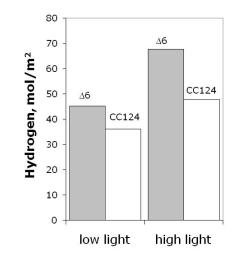

Approach/Milestones – Task 2

Task 2: Utilize the limited STH sulfur-deprivation method to test (a) the rates of H_2 production by inducible ATP synthase mutants that are not limited by the non-dissipation of a proton gradient; and (b) the long-term performance of immobilized algal cultures.

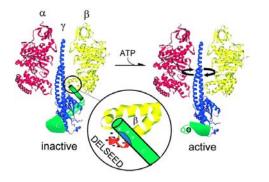
Task 2	Milestone	Due date	Status
3.3.3	Physiologically characterize mutant strains with a defective AtpE gene under the regulation of an inducible promoter	3/30/12	Completed
3.3.4 (CSP Agreement milestone 51536)	Demonstrate continuous operation of the sulfur- deprivation process for a total of 2 months upon addition of phosphate/sulfate to alginate- immobilized cultures	9/30/12	50% completed



Dr. Eric Johnson JHU


Dr. Sergey Kosourov RAS

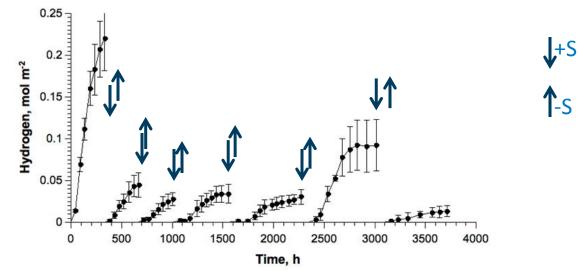
Task 2 — Generate, physiologically characterize and test the rate of inducible ATP synthase mutants that are defective in maintaining the proton gradient – completion of milestone 3.3.3.


Justification: electron transport from water to ferredoxin is accompanied by the formation of a proton gradient that drives the production of ATP (essential for CO_2 fixation). During H₂ photoproduction, ATP demand drops, impeding the efficient dissipation of the proton gradient and impairing electron transport (and thus of H₂ production).

Previous results: *C. reinhardtii m*utants defective in one of the ATP synthase subunits, AtpE ($\Delta 6$, dark bars), grow more slowly but produce H₂ at higher rates than the corresponding wild-type (cc124, light bars) strains, particularly at high light intensities.

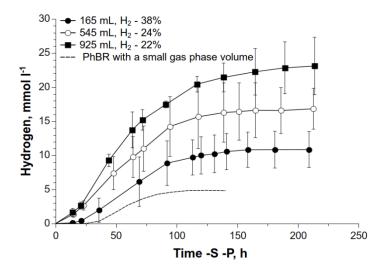
Task 2 (cont.) – Generate, physiologically characterize and test the H₂production rate of inducible ATP synthase mutants that are defective in maintaining the proton gradient – milestone 3.3.3 completed.

Current progress:


(a) Generated six mutants in the C-terminal of the ATP synthase subunit ε ; four showed similar rates of H₂ production as their parental strain but two, EJ13 and EJ17, were unable to grow constitutively.

(b) The defective EJ17 gene was transformed behind the PsbD promoter into strain Ind41_15D. The transformed gene was shown to be stably incorporated into the chloroplast genome and to allow growth of the transformant under photo or heterotrophic conditions in the presence of spectinomycin - *completion of milestone 3.3.3*.

(c) The inducibility of the Ind41_15D/psbD system under selective pressure was positively demonstrated by using the expression of an orange fluorescent protein as a marker.


Task 2 – Demonstrate continuous H_2 production for 2 months by sulfurdeprived, alginate-immobilized algae – towards completion of milestone 3.3.4.

Previous results: alginate-immobilized algae photoproduce H_2 at higher specific rates and light conversion efficiencies than cultures in suspension upon sulfur deprivation, and they show higher tolerance to aerobic environments; cycles of +S/-S resulted in prolongation of H_2 production for an additional 6 cycles of about 500 hours each.

Current results: preliminary results by using continuous flow of S+ medium resulted in low rates of H_2 production; the experiment is being repeated under different operational conditions.

Task 2 – Demonstrate the effect of headspace volume on the H_2 photoproduction yield.

Current results: In suspension cultures, a 4x increase (from ~0.5 to ~2) in the ratio of gas/liquid volume results in a **2x increase in the total yield of H**₂ **gas**. Similar results were shown with immobilized cultures.

Remarkably, 565 ml of H₂ gas per liter of the suspension culture is the highest yield ever reported for a wild-type strain in a time period of less than 180 hours. A control PhBR with a historically small gas phase volume of \sim 5 – 10 ml only produced up to 120 ml L⁻¹ of H₂ gas.

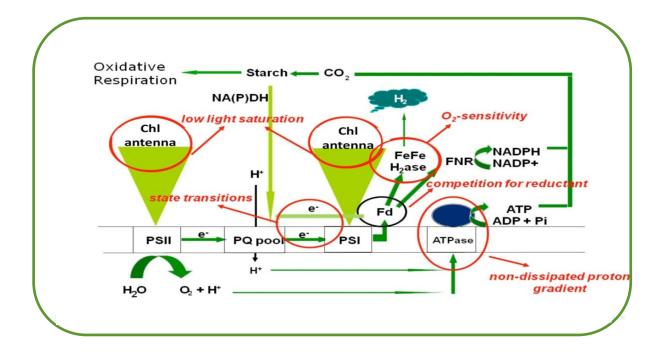
Collaborations

Partners (subcontractors):

 Dr. Sergey Kosourov, Russian Academy of Sciences – applies sulfur deprivation to sulfur-immobilized *C. reinhardtii* cultures and tests their H₂production capabilities (Task 2).

- Dr. Eric Johnson, Johns Hopkins University – generates ATP synthase mutants, develops transformation protocols and transforms Chlamydomonas reinhardtii; tests physiological properties of transformants (Task 2).

2012


Task 1 – Complete milestone 3.3.5: Demonstrate expression of an active Ca1 in a *C. reinhardtii* hydrogenase-less background and characterize O_2 sensitivity of light-driven H_2 production.

Task 2 – Complete milestone 3.3.4: Demonstrate continuous operation of the sulfur-deprivation process for a total of 2 months upon addition of phosphate/sulfate to alginate-immobilized cultures.

Work beyond FY12: Start to genetically express mutated ATP synthase and truncated antenna regulatory genes into a strain expressing the Ca1 hydrogenase. Develop photobioreactor systems for cyclic or continuous H_2 production based on current optimization of gas space composition (not shown), alginate immobilization, and others.

Summary Slide

Relevance: Photobiological water splitting coupled to hydrogenase-mediated H_2 production has the potential to convert *about 10% of incident solar energy into* H_2 . Various barriers have been identified as currently limiting green algal H_2 production, including the O_2 sensitivity of the hydrogenase enzyme, and down-regulation of photosynthesis due to non-dissipation of the proton gradient.

Summary Slide (cont.)

Approach: NREL is expressing a more O_2 -tolerant bacterial hydrogenase in green algae and generating ATP synthase mutants that prevent down-regulation of photosynthesis with JHU. NREL and RAS use the low STH sulfur-deprivation process to test candidates that have been generated to address various barriers, as well as optimizing photobioreactor conditions for efficient and sustainable production of H₂ gas.

Technical Accomplishments and Progress:

- 1. Successfully expressed a bacterial hydrogenase in a Chlamydomonas strain lacking native hydrogenase activity and detected photoproduction of H₂.
- 2. Generated inducible ATP synthase mutants , tested for growth, and are testing their phenotype with respect to H₂ photoproduction.
- 3. Continues to optimize long-term H₂ photoproduction by alginate-immobilized Chlamydomonas.

Collaborations: Drs. Sergey Kosourov (RAS) and Eric Johnson (JHU).

Proposed Future Research: For 2012: complete milestones 3.3.4 (demonstrate continuous H₂ photoproduction by addition of sulfate) and 3.3.5 (measure the *in vivo* O₂ tolerance of mutants expressing Ca1); measure the inducible H2 photoproduction capability of the ATP synthase mutant. After 2012: genetically combine useful phenotypes into a single organism expressing Ca1.