

Surface Validation: Physical and Electronic Characterization of Materials for Photoelectrochemical Hydrogen Production Clemens Heske

Department of Chemistry, University of Nevada, Las Vegas May 16, 2012 Project ID # PD051

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 11/4/11
- Project end date: 11/2/12
- Percent complete: 42%

Budget

- Total project funding
 - DOE share: \$150k
 - Contractor share: \$0k
- Funding received in FY11: \$0k
- Funding for FY12: \$150k

Barriers

- Barriers addressed
 - Y. Materials Efficiency
 - Z. Materials Durability
 - AA. PEC Device and System Auxiliary Material

Partners

- Interactions/collaborations: DOE EERE PEC WG (in particular NREL and LLNL), Berkeley Lab, HZB Berlin, U Würzburg, KIT
- Project lead: C. Heske, UNLV

Activity Overview: Electronic and Chemical Properties of PEC candidate materials (Relevance)

To enhance understanding of PEC materials and interfaces and promote break-through discoveries:

- Utilize cutting-edge soft x-ray and electron spectroscopy characterization
- Develop and utilize novel characterization approaches (e.g., *in-situ*)
- Provide characterization support for surface validation
- Address materials performance, materials lifetime, and capital costs through intense collaboration within (and outside of) the PEC WG

Research Activity (Approach)

- Overarching goal: compile experimental information about the electronic and chemical properties of the candidate materials studied within the PEC WG
 - Determine status-quo (includes: find unexpected findings)
 - Discuss modifications (composition, process, ...) with partners
 - Monitor impact of implemented modifications
- Use a world-wide unique "tool chest" of experimental techniques
- Address all technical barriers related to electronic and chemical properties of the various candidate materials, in particular:
 - Bulk and surface band gaps
 - Energy-level alignment
 - Chemical stability
 - Impact of alloying/doping

Collaborations

(Relevance, Approach, & Collaborations)

- Collaborations are at the heart of our activities:
 - Supply of samples
 - Most important: supply of open questions, issues, challenges
 - Interactive interpretation of results
 - Joint discussion of potential modifications
 - Involvement in implementing modifications
- Great collaboration partners in the PEC WG: Current project:
 - NREL: (Ga,In)(P,N)₂
 - LLNL: Theory ((Ga,In)P₂, liquid/solid interfaces)

Predecessor project:

- Stanford U: MoS₂
- U Hawaii/HNEI: WO₃, W(X)O(Y)₃, Cu(In,Ga)(S,Se)₂
- UC Santa Barbara: Fe_2O_3 et al.
- MVSystems: Si:C

UV/Soft X-ray Spectroscopies (Approach)

High dynamic range Glovebox XPS, UPS, Auger, IPES

High resolution XPS, UPS, Auger

Scanning Ýrobe Microscope

Sample preparation and distribution

Relocation to a (much bigger and better) lab

SALSA: Solid And Liquid Spectroscopic Analysis at Beamline 8.0, Advanced Light Source, LBNL

Technical Challenges (the big three)

Material Characteristics for Photoelectrochemical Water Splitting

Efficiency – the bulk band gap (E_g) must be at least 1.6-1.7 eV, but not over 2.2 eV

Material Durability – semiconductor must be stable in aqueous solution

Energetics – the surface/interface band edges must be optimized with respect to the H₂O redox potentials

All must be satisfied simultaneously

After John Turner, NREL

Requirements for PEC Materials (Relevance)

- Chemical stability
- Optimized bulk band gap for photon absorption
- Optimized band edge positions at the relevant surfaces

(Ga,In)(P,N)_x thin films for PEC

With:

Todd Deutsch and John Turner

National Renewable Energy Laboratory

Tadashi Ogitsu, Brandon Wood, Woon Ih Choi

Lawrence Livermore National Laboratory

David Prendergast

Lawrence Berkeley National Laboratory

For more details, please see PD035 and PD058

- 1. Determine the benchmark electronic structure of (Ga,In)P₂ surfaces
- 2. Investigate impact of N-treatment on (Ga,In)P₂ surfaces
- 3. Correlate spectroscopy with theory to establish base for predictive capabilities

Compile data for (Ga,In)_xP_y similar to previous results on WO₃ and WO₃:Mo

Electronic surface structure of as-received GaInP₂ surface ("dirty")

- Surface-sensitive measurements are powerful, but are also influenced by surface adsorbates
- HOMO-LUMO energy separation of surface adsorbates ("band gap"): ~ 3.3 eV
- Compare: UV-Vis and photocurrent spectroscopy (NREL): ~ 1.8 eV
- Work function of surface adsorbates: ~ 4.5 eV
- Current work: optimize surface cleaning procedures to minimize adsorbate influence

Need for Surface Cleaning: Low-Energy Ion Treatments of an air-exposed (Ga,In)P₂ film (50 eV Ar⁺ ions)

Treatment Number	Length of Time Under 50 eV Ar⁺ Ion Treatment	Cumulative Time Under 50 eV Ar ⁺ Ion Treatment
As Received	0	0
#1	15 minutes	15 minutes
#2	30 minutes	45 minutes
#3	30 minutes	75 minutes
#4	1 hour	135 minutes
#5	2 hours	255 minutes
#6	2 hours	375 minutes
#7	2 hours	495 minutes
#8	4 hours, 30 minutes	765 minutes

Increase of Ga, In, P signals; decrease of C, O as a function of treatment time

Low-Energy lon Treatments of an air-exposed (Ga,In)P₂ film: XPS detail spectra of C, O, and P (Accomplishments)

Essentially complete removal of O, C, and P-O-x signals (good!). But is the surface damaged?

Band edges, gap, and work function (Accomplishments)

- Band gap narrows with treatment
- Fermi energy shifts towards the VBM
- Work fct. first increases, then decreases
- When is the surface clean? (Bulk: 1.75 eV)

Need for Pristine Starting Materials without Air-Exposure

Surface Validation: Progress in establishing baseline spectra of uncorroded surfaces for comparison

• At NREL

- Nitrogen purged glove bag attached to synthesis reactor
- Metal Organic Chemical Vapor Deposition (MOCVD) synthesis of 2μm thick p-GaInP₂ epilayer
- Packaged under nitrogen with off-theshelf vacuum seal device and shipped to UNLV
- John Geisz, Waldo Olavaria from NREL PV center

• At UNLV

- Opened in glove box and introduced into UHV for analysis
- XPS, UPS, IPES at UNLV

(Accompl.)

See talk PD035!

XPS survey spectra of two (Ga,In)P₂ samples using different sample handling

(Accomplishments)

Air-exposed, ion-treated, and "clean" (Ga,In)P₂ surfaces: XPS detail spectra of P and In (Accompl.)

Band gap of "clean" (Ga,In)P₂ (Accomplishments)

Need for (some) Surface Cleaning: Low-Energy Ion Treatments of "clean" (Ga,In)P₂ film (50 eV Ar⁺ ions)

- 1. Determine the benchmark electronic structure of (Ga,In)P₂ surfaces
- 2. Investigate impact of N-treatment on (Ga,In)P₂ surfaces
- 3. Correlate spectroscopy with theory to establish base for predictive capabilities

Impact of N-treatment on (Ga,In)P₂ surfaces (Accomplishments)

- The implanted N atoms can be detected using N K XES
- N atoms are clearly in a nitride environment
- Clear evidence for N-In and N-Ga bonds

- Spectra give detailed insight into the electronic valence structure from the viewpoint of a N 1s hole
- VN spectrum shows Fermi edge (as expected for metallic behavior)
- n-GaN spectrum shows Ga 3d -> N 1s transition at 377.6 eV, shows presence of Ga – N bonds
- InN: In 4d N 2p states 17 eV below VBM

It's clearly not molecular Nitrogen (gas)! (Accomplishments)

 Measurements were performed in an *in-situ* gas cell in the SALSA chamber (a similar *in-situ* cell is under construction for liquid/solid PEC interfaces!)

- 1. Determine the benchmark electronic structure of (Ga,In)P₂ surfaces
- 2. Investigate impact of N-treatment on (Ga,In)P₂ surfaces
- 3. Correlate spectroscopy with theory to establish base for predictive capabilities

Theory-Experiment feedback cycle (see PD058)

Good agreement of experimental and simulated X-ray Absorption Spectroscopy of GaP and InP (see also PD058) (Accomplishments)

Bulk (reference system)

(Ga,In)(P,N)_x Summary (Accomplishments)

- Ion-treatment series of air-exposed sample gives first insights into electronic structure
- Optimally packed sample gives much cleaner starting material, allowing first look at pristine band edge positions (some surface cleaning under way)
- Detected N in nitrogen-treated samples with enhanced chemical stability – chemical environment of N could be assessed
- Good agreement in GaP and InP XAS between experiment and theory (LLNL)
- In-situ gas cell is operational, liquid/solid cell in development

Research Plan & Basis for Continuation of Research (Proposed Future Work)

- Continue the close collaboration on (Ga,In)(P,N)_x with our partners at NREL and LLNL
- Determine electronic and chemical properties of PEC candidate materials, compare with theory, and answer as many questions as possible
- Study the impact of material modifications by the collaboration partners (in particular surface nitridation)
- Study material durability after exposure to a variety of ambient environments
- Find unexpected things (e.g., guest species)
- Depending on funding availability: further develop cells for *in-situ* soft x-ray studies at the Advanced Light Source (Berkeley Lab)

Overall Summary (Relevance)

- Approach allows unprecedented insight into the electronic and chemical structure of PEC candidate materials from within (and outside of) the DOE WG, with particular emphasis on GaInP₂-based systems from NREL
- Portfolio of experimental techniques ranging from "standard" to "pushing the edge forward" (*in-situ* still on the horizon)
- Requires close collaboration with synthesis group at NREL and theory group at LLNL/Berkeley Lab
- Results will be as good as the questions we ask!
- Addresses materials performance, lifetime, and cost directly or indirectly through collaboration partners
- Met all program milestones and delivered all deliverables of characterization data and analyses to program collaborators ³⁵