# **PD053**

## PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION

PI: Arun Madan MVSystems, Inc. May 14-18, 2012

## Project ID # DE-FC36-07GO17105, A00

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# Approach

Approach 1:

**Stabilization of High** 

**Efficiency Crystalline** 

**Material Systems** 

Efficiency

The US DOE PEC Working Group approach towards efficient and durable solar H<sub>2</sub> production



Durability

# **Overview**

## Timeline

### Phase 1:

- Project start date: 9/1/2007
- Project end date: 12/31/2010

Passed go/no go evaluation in Nov, 2010

## Phase 2:

- Project start date: 1/1/2011
- Project end date: 12/31/2012



- Total project funding
  - DOE share: \$ 2,970,172
  - Cost share: \$ 820,000
- Funding received FY11: \$686k
- Planned funding FY12: \$556k

## **Barriers**

 Challenges for photoelectrochemical hydrogen production technologies:

- -Y: Materials Efficiency
- -Z: Materials Durability
- -AB: Bulk Materials Synthesis
- -AC: Device Configuration Designs

## Partners

## <u>Collaborators:</u>

Hawaii Natural Energy Institute (HNEI) National Renewable Energy Laboratory (NREL) University of Nevada at Las Vegas (UNLV)

• Project Lead: MVSystems, Inc.

## **Relevance** - Objectives



Our goal: Develop a monolithic hybrid PEC device powered by MVS' lowcost a-Si-based tandem solar cell.



Project Objectives:

- Solar-to-hydrogen efficiency: 5%
- Durability: 500-hrs (by the end of Phase II)

## **Relevance** - Milestones

|                                      | <u>Material</u><br>Photocurrent       | <u>Material/Device</u><br><u>Durability*</u>      | <u>Device Efficiency</u><br><u>(STH)</u> |  |
|--------------------------------------|---------------------------------------|---------------------------------------------------|------------------------------------------|--|
| Goal ->                              | 4mA/cm <sup>2</sup>                   | 500hrs                                            | 5%                                       |  |
| Amorphous<br>Silicon Carbide         | 8mA/cm2                               | 310hrs @ 1mA/cm <sup>2</sup>                      | 2.5%STH                                  |  |
| (d-010)                              | >100% Achieved                        | 62% Achieved                                      | 50% Achieved                             |  |
| Tungsten Oxide<br>(WO <sub>3</sub> ) | 3.6mA/cm <sup>2</sup><br>90% Achieved | 600hrs @ 1.5mA/cm <sup>2</sup><br>>>100% Achieved | 3.1%STH<br>62% Achieved                  |  |
| I-III-VI <sub>2</sub>                |                                       |                                                   |                                          |  |
| (Copper                              | 20mA/cm <sup>2</sup>                  | 420hrs @ 4mA/cm <sup>2</sup>                      | 4.34%STH                                 |  |
| based)                               | >>100% Achieved                       | 84% Achieved                                      | 87% Achieved                             |  |

\* Test conditions in slide #24.

## **Relevance** – Barriers

|                                              | a-SiC                                                                                                                     | Metal oxides                                                                   | I-III-VI <sub>2</sub><br>(Copper Chalcopyrite-based)                                        |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| AB: Synthesis                                | Entire PEC device<br>fabricated with low-cost<br>PECVD in an cluster tool<br>identical to those used in PV<br>industries. | Best performance<br>achieved with<br>conventional sputtering<br>methods        | CGSe films synthesized with co-<br>evaporation methods. Synergy<br>with PV industry (CIGSe) |
| AC: Device<br>design                         | Monolithic device                                                                                                         | Hybrid PEC device<br>concept demonstrated<br>with mechanical stack             | Hybrid PEC device concept<br>demonstrated with co-planar<br>PV/PEC                          |
| - Achieved:<br>- Barriers:                   | Νο                                                                                                                        | Current deposition<br>temperature requires<br>innovative integration<br>scheme | Current deposition<br>temperature requires<br>innovative integration<br>scheme              |
| Z: Durability<br>- Achieved: (so far tested) | 310-hrs                                                                                                                   | 600-hrs                                                                        | 420-hrs                                                                                     |
| Y: Efficiency<br>- Achieved:                 | Less STH (3%) compared to<br>the solid state version<br>(>5%)                                                             | 3.1% STH with pure WO <sub>3</sub><br>(2.6 eV).                                | 4.34% STH achieved with co-<br>planar integration.                                          |
| - Barriers:                                  | Need to modify surface to<br>lower overpotential                                                                          | Need to discover metal<br>oxides with appropriate<br>band-gap                  | Need to modify band<br>alignment to lower onset<br>potentials                               |

## **Approaches**

### Synergetic work on 3 different material classes

1) All 3 hybrid PEC devices will use the same a-Si tandem solar cell "engine" --> each improvement on the solar cell design benefits to the entire program

2) Both photo-anodes and photo-cathodes are evaluated under one program

--> Discovery on new surface catalysts can be implemented to new counter electrodes

3) All 3 material classes performances are evaluated in the same laboratory

--> all tests are performed under identical experimental conditions facilitating comparison

#### 3 major tasks to achieve STH efficiency > 5%

**a-SiC**: improve interface energetics and kinetics with appropriate surface treatment - <u>decrease overpotential</u>

Metal oxides: identify stable compounds with appropriate band gap (2.0-2.2 eV) - *improve transport properties with elemental doping* 

I-III-VI<sub>2</sub>: lower valence band edge via Cu and Se (partial) substitution
- decrease overpotentials and increase bandgap from 1.6 to 1.9 eV

Part I

## Amorphous Silicon Carbide (a-SiC)

Presenter: Jian Hu, MVSystems, Inc

Part II

## Metal Oxide Compounds

Presenter: Nicolas Gaillard, Hawaii Natural Energy Institute

Part III

## I-III-VI<sub>2</sub> (Copper Chalcopyrite-based)

Presenter: Nicolas Gaillard, Hawaii Natural Energy Institute

## a-SiC: Cluster Tool PECVD/Sputtering System

All a-SiC films, photoelectrodes, solar cells and the PEC hybrid devices were fabricated in the cluster tool PECVD/Sputtering System, designed and manufactured by MVSystems, Inc.



#### Main deposition parameters:

| RF power:                   | 10-20 W       |
|-----------------------------|---------------|
| Excitation frequency:       | 13.56 MHz     |
| Pressure:                   | 300-550 mTorr |
| SiH <sub>4</sub> flow rate: | 20 sccm       |
| CH₄ flow rate:              | 0-20 sccm     |
| H <sub>2</sub> flow rate:   | 0-100 sccm    |
| Substrate temperature:      | 200°C         |

http://www.mvsystemsinc.com

chambers

Amorphous and/or nano-crystalline Si solar cells in conjunction with the photo-electrode as the driver for a-SiC, WO3 and I-III-VI<sub>2</sub> PEC.

### **Progress:** Comparison with a Solid-State Configuration



> Charge carrier extraction problem at the a-SiC/electrolyte interface

### Addressing efficiency with catalytic surface treatment



### **Progress:** Surface Modification – Use of Ru Nanoparticles

#### Addressing efficiency with catalytic surface treatment



Ru nanoparticle coating (HNEI)



- Ru alloys (i.e. Ru-Ni) with high HER catalytic activity demonstrated
- Ru nanoparticles with activity comparable with Pt recently reported<sup>(\*)</sup>



(\*) Yamada, J. Am. Chem. Soc., 2011, 133 (40), pp 16136–16145

#### [Data measured by HNEI]

## **Future Work (a-SiC PEC electrode)**



I Improvement of photocurrent in the hybrid PEC cell.

- a. Refine surface treatment processes and further reduce over-potential: expected  $J_{nh} > 3 \text{ mA/cm}^2$  and STH efficiency > 3%.
- b. Improve performance of a-Si tandem solar cell and PV/a-SiC photoelectrode triple junction device:

expected FF>0.7 and  $J_{ph}$  > 4 mA/cm<sup>2</sup> @1.5V.

Durability tests.

- Perform more durability test up to  $\geq$ 500 hours.

Part I

## Amorphous Silicon Carbide (a-SiC)

Presenter: Jian Hu, MVSystems, Inc

Part II

## Metal Oxide Compounds

Presenter: Nicolas Gaillard, Hawaii Natural Energy Institute

Part III

## I-III-VI<sub>2</sub> (Copper Chalcopyrite-based)

Presenter: Nicolas Gaillard, Hawaii Natural Energy Institute



Y. Chang, J. Phys. Chem. C 115, 25490 (2011).

## **Progress:** New metal oxides with E<sub>G</sub> = 2.0-2.2eV

Addressing efficiency



#### Porous CuWO<sub>4</sub> thin film $\Rightarrow$ high surface area



Stability demonstrated for 24 hrs (so far tested)



### **Progress:** New metal oxides with $E_G = 2.0 - 2.2 eV$

#### Addressing efficiency

#### Improving CuWO<sub>4</sub> transport properties with CNT



TEM micrographs of  $CuWO_4 n.p.$  on CNT



→ 1 mA/cm<sup>2</sup> achieved with CuWO<sub>4</sub> <sup>/</sup> CNT nanocomposites → Compatible with hybrid concept (CNT absorb only 2.5%)

#### Main barrier: a-Si solar cells performances degraded after long exposure to heat

Issue





- **WO<sub>3</sub> samples clearly underperformed in this**
- $\rightarrow$  New hybrid device being tested

### Future Work (Metal Oxides PEC electrode)

 $\Rightarrow$  Theoretical STH limit with WO<sub>3</sub> is approx. 6%. All attempts to reduce E<sub>G</sub> have been unsuccessful

 $\Rightarrow$  With a band gap of 2.2 eV, CuWO<sub>4</sub> is a serious candidate for low cost PEC hydrogen production, with potentially 13% STH efficiency.

CuWO<sub>4</sub> transport properties have been identified as main limitation

### Plans to achieve higher efficiency:

 Other *solar absorber/charge collector* architectures will be studied (Stanford).
 Improvements could be also achieved with elemental doping (NREL).



Part I

## Amorphous Silicon Carbide (a-SiC)

Presenter: Jian Hu, MVSystems, Inc

Part II

## Metal Oxide Compounds

Presenter: Nicolas Gaillard, Hawaii Natural Energy Institute

Part III

## I-III-VI<sub>2</sub> (Copper Chalcopyrite-based)

Presenter: Nicolas Gaillard, Hawaii Natural Energy Institute



#### **Barriers**:

- 1. Bandgap (1.65 eV) currently too small
- 2. Overpotential too high

Addressing both barriers by lowering valence band-edge with substitution of Ag and/or Sulfur

Bandgap:

 $CuGaSe_2 = 1.65eV$  (baseline)

AgGaSe<sub>2</sub> up to 1.85eV

CuGaS<sub>2</sub> up to 2.43eV



Highlighted in yellow is the voltage region where completed devices typically operate.

<u>Barrier:</u> Low band gap (1.65eV) materials currently produced require innovative device design <u>Solution:</u> Large photocurrent produced by materials in this class allow co-planar PV-PEC integration





### 4.34% STH achieved! (AM1.5 1-sun)

- 3 a-Si PV cells
- CGSe<sub>2</sub> PEC
- Outdoor Standalone (no external voltage):
  - 3.53mA/cm<sup>2</sup> = 4.34%STH
- Surpasses old record while using much cheaper materials

## Future Work (I-III-VI<sub>2</sub> hybrid photoelectrode)

- Coplanar Device utilizing 3 PV cells of suitable performance can surpass 5% STH.
- Lowering the valence band to increase E<sub>g</sub> and decrease overpotential is THE key to high performance chalcopyrite-based PEC hybrid devices.

Lower overpotential  $\Rightarrow$  fewer PV cells required  $\Rightarrow$  diminishes photocurrent division

Higher band gap: buried PV cell approach possible (synergy with ongoing research in PV industry towards tandem CIGSe-based PV cells)



## Future Work (Novel Inverted Monolithic Stack)



- Progress at MVSystems utilizing higherbandgap a-SiC (~2.0eV) in PV applications
- Lowering I-III-VI<sub>2</sub> bandgap much easier than raising it
- Device development underway, possibility of 8-10%STH efficiency
- Highly dependent on voltage characteristics when fabrication proceeds



## Durability test

-0.001

-0.002

-0.003

-0.004

Current density (mA.cm<sup>-2</sup>)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

100

200

300

Time (hrs)

400

I (Amps/cm<sup>2</sup>)

#### Addressing "Durability"

### a-SiC photoelectrode:

- Under AM1.5<sub>G</sub> @1mA/cm<sup>2</sup>, in pH2 buffer solution.
- No dark current increase for 310 hours

### WO3 photoelectrode:

Under AM1.5G @1.6V vs. SCE in pH2.
High corrosion resistance of tungsten oxide in acidic solution for up to 600 hrs.

### CGSe photoelectrode:

- Under AM1.5<sub>G</sub> @1.7V (4mA/cm<sup>2</sup>), in 0.5M  $H_2SO_4$  for 420 hours total
- Sealant and illumination issues may have led to degradation



E (Volts v. Ag/AgCI)

J @ 1.6 V vs. SCE

pH2 / AM1.5

500

600

## Hybrid PV/a-SiC device after 310-hrs



[Data measured by NREL]

## Five WO<sub>3</sub> samples after 600-hrs







## Collaborations

– US Department of Energy PEC working group: Leading task force on  $WO_3$ ,I-III-VI<sub>2</sub> and a-SiC photoelectrodes

– *National Renewable Energy Laboratory*: collaboration to perform theoretical research and advanced morphological analysis of new materials.

- *University of Nevada at Las Vegas*: collaboration to analyze the surface energy band structure of new photoelectrode materials.

- University of California in Santa Barbara: collaboration on surface treatment for catalytic purposes.

- Stanford University: collaboration on surface treatment for catalytic purposes.

- *Helmholtz Centre Berlin*: New alloy composition (sulfurization) fabrication, material/device theory

– *International Energy Agency/HIA/Annex 26*: collaboration with international institutes and universities including EMPA (Swiss) and University of Warsaw (Poland).

# **Project summary**

### a-SiC photoelectrode:

- Durability of hybrid PV/a-SiC cell: 310 hours
- □ Photocurrent density (in solid state version): >4 mA/cm<sup>2</sup> (possible STH efficiency >5%)
- **D** Photocurrent density in pH2 electrolyte: 2.0 mA/cm<sup>2</sup> (or STH efficiency of ~2.5%)

Future work: enhance surface catalysis and improve a-Si tandem solar cell (FF, Jsc)

### Metal oxides photoelectrode:

- $\Box$  Durability of WO<sub>3</sub> sputtered material: 600 hrs.
- **□** CuWO<sub>4</sub> (2.2 eV) is a promising PEC material,  $J_{photo} \times 10$  over the past year.
- Bifacial monolithic integration demonstrated. Compatible with CGSe systems.

Future work: improve CuWO<sub>4</sub> transport properties (new architectures and/or doping)

### I-III-VI<sub>2</sub> photoelectrode:

- Durability of CGSe PEC cell: 420 hrs
- □ Photocurrent density of PEC film: 20 mA/cm<sup>2</sup> (offers novel device integration)
- □ Photocurrent density of coplanar hybrid device: 3.53 mA/cm<sup>2</sup> (4.34% STH efficiency)

Future work: develop robust sulfurization process ( $7 E_G$ ) and create CIGSe with lower  $E_G$ 

# **Technical Back-Up Slides**

## a-SiC: Barrier at a-SiC/ITO interface



Which could translate to STH >5%

Removal of barrier will improve the solid state device substantially

## a-SiC: Surface methylation and nanoparticles



\* Takabayashi, Nakamura, & Nakato, Journal of Photochemistry & Photobiology A, 166 (2004).

### 500-hr durability test on hybrid PV/a-SiC device

 Under AM1.5G @1mA/cm<sup>2</sup>, in pH2 buffer solution.





## a-SiC: Hybrid PV/a-SiC PEC Device - Simulation Results

Addressing "Y"

Energy band diagram for hybrid PV/a-SiC PEC device





Calculated photocurrent and STH efficiency for 3 different configurations:

| Photo-<br>electrode | Eg<br>(eV) | JSC (mA/cm <sup>2</sup> )<br>Available | Voc<br>(V)    | PV cell configuration       | Filtered<br>Available | Voc<br>(V) | STH (%)<br>Possible |
|---------------------|------------|----------------------------------------|---------------|-----------------------------|-----------------------|------------|---------------------|
| a-SiC:H<br>(1)      | 2          | 8.85<br>(100 nm)                       | 0.6<br>(p-i)  | a-Si/a-Si<br>(620nm/132nm)  | 7.1                   | 1.9        | 8.73                |
| a-SiC:H<br>(2)      | 2          | 8.85<br>(100 nm)                       | 0.6<br>(p-i)  | nc-Si/a-Si<br>(1.5µm/244nm) | 8.85                  | 1.5        | 10.89               |
| a-SiC:H<br>(3)      | 2          | 12<br>(250 nm)                         | >1<br>(p-i-n) | nc-Si<br>(1.5μm)            | 12.0                  | 0.6        | 14.7                |

2000

1600

1200

800

400

 $(\Omega.cm^2)$ 

 $|\mathbf{Z}_{\mathrm{imaginary}}$ 

#### Addressing "Y"

700.0

#### Improving CuWO<sub>4</sub> transport properties with CNT



Light absorber / charge collector

- 1. Various CNT:CuWO<sub>4</sub> w.t. %
- 2. Spray on SnO<sub>2</sub>:F substrate
- 3. Annealing @ 500°C in air





#### Absorption from CNT in CuWO<sub>4</sub>

 $\rightarrow$  1 mA/cm<sup>2</sup> achieved with CuWO<sub>4</sub>CNT nanocomposites

→ Compatible with hybrid concept (only 2.5% transmission loss)



