

Hydrogen By Wire – Home Fueling System

P. I. Name: Luke T. DaltonOrganization: Proton OnSiteDate: May 15, 2012

Project ID #PD067

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview Timeline

- Project Start: 22 Sep 2010
- Project End: 14 Aug 2012
- Percent complete: 90%

Barriers

- Barriers addressed
 - G: Capital Cost
 - H: System Efficiency

Table 3.1.4. Technical Targets: Distributed Water Electrolysis Hydrogen Production ^{a, b, c}								
Characteristics	Units	2003 Status	2006 Status °	2012 Target	2017 Target			
Hydrogen Cost	\$/gge	5.15	4.80	3.70	<3.00			
Electrolyzer Capital Cost ^d	\$/gge \$/kW	N/A N/A	1.20 665	0.70 400	0.30 125			
Electrolyzer Energy Efficiency ^f	% (LHV)	N/A	62	69	74			

Budget

- Total project funding

 DOE share: \$1,000,000
- Planned Funding for FY12
 DOE share: \$500,000

Partners

- Oak Ridge National Lab
- Industry component suppliers

Relevance Hydrogen Fueling Pathways

- Continuum of options
 - Large, centralized plants
 - Requires transportation or distribution of fuel
 - Neighborhood fueling stations
 - Compatible with medium-to-large scale PEM Electrolysis
 - Generates fuel closer to end-user
 - Can be renewable
 - Home-based fueling
 - Compatible with small scale PEM Electrolysis
 - Generates fuel in the end-user's garage
 - Can be renewable
- Each generation scale will have its place

Relevance Fueling Infrastructure Challenges

- Ramp-up
 - Fuel production
 - Storage
 - Transportation and/or distribution Water

EXISTING:

- End-customer delivery
- Pace with parallel ramp-up of related vehicles

Contraction of the second seco

Relevance Advantages of Hydrogen Home Fueling

Vehicle Type	Range (Miles)	Empty to Full Refueling / Charging Time (Hours)	
Plug-in Hybrid Electric (PHEV)	40	4 to 6 (@110V)	
Battery Electric Vehicle (BEV)	100	8 to 16 (@110V)	
Compressed Natural Gas (CNG)	200-300	* 8 to 16 (potential <6h)	
Fuel Cell Hybrid Electric Vehicle (FCV)	300	* 1 to 6 (Targets of study)	

Comparison of Residential Fueling Charge Time and Vehicle Range (J. Schneider et. al, NHA 2009)

Relevance Project Objectives

- Develop enabling technologies
 - 350-bar differential pressure electrolysis
 - Cell stack
 - Overboard seal
 - Cross-cell seal, membrane support
 - Fueling system
- Demonstrate prototype operation
 - 350-bar hydrogen generation
 - Fueling capability

Approach Task Breakdown

• Task 1: Prototype System Design/Fabrication

- System and key component design
- Safety analysis
- Procurement, fabrication, and acceptance testing
- Task 2: Prototype Stack Design
 - Requirements definition
 - Cell hardware design
 - Stack embodiment hardware design

• Task 3: Prototype Component Verification

Cell and stack component verification

• Task 4: Prototype System Testing

- Stack fabrication and assembly
- Integrated stack/system testing

Technical Accomplishments

Task	Task Description	Progress Notes	Completion
1.0	System Design / Fabrication	 Completed component procurement. Completed fabrication. Completed hydrogen phase separator fabrication and proof test. Completed system checkout. 	100%
2.0	Stack Design	 Completed full-scale pressure testing. Completed prototype and final design of cell and stack components. 	100%
3.0	Component Verification	 Completed verification of stack embodiment hardware. Completed verification of cell flow fields. Completed verification of gas diffusion at full differential pressure. 	80%
4.0	Integrated Testing	 Completed system power supply and pump testing. Integrated cooling and data acquisition equipment. 	10%

Technical Accomplishments Task 1.0: System Design/Fabrication

Prototype system completed fabrication and checkout

Technical Accomplishments Task 1.0: System Design/Fabrication

- High pressure phase separator design refinement and prototype fabrication completed
 - Proof pressure test >7,500 psig completed

Technical Accomplishments Task 2.0: Stack Design

• Full-scale pressure testing—proof >7,500 psig

Technical Accomplishments Task 3.0: Component Verification

• Flow field optimization complete

Flow Verification

Technical Accomplishments Task 3.0: Component Verification

Cross-cell diffusion testing completed at 5000 psid

High Pressure Diffusion Testing

Pressure (psid)

Technical Accomplishments Task 4.0: Integrated Testing

- High pressure phase separator simulation created
 - Simulates input/output flow rates, rate of pressurization
 - Utilized to tune operating algorithm

- System ready for operation
- Stack installation anticipated soon!

Collaborations

- Oak Ridge National Laboratory
 - Collaborated on analyzing durability of metallic and coated separator materials
- Industry component suppliers
 - Collaborated to identify appropriate components for pressure, temperature, and fluid compatibility requirements.

Future Work

- Integrated operational testing
- Scale up cell count to increase total output
- Optimize system packaging for siting requirements and cost effectiveness

Future Work: Home Fueler Roadmap

Future Work: 700-bar Fueling Comparison HOGEN® NF Small-Scale 10,000 psi Fueler

- Electrochemical compression to 2,400 psi, 2.2 kg/day production
- 10,000 psi slow-fill fueling capability
- Qualified for GM vehicle fueling

Future Work: Undersea Energy

- U.S. Navy Office of Naval Research
 - Parallel related development
 - Balanced pressure version of cell stack
 - Applied to air independent energy storage need

Future Work Product Package Development • Physical Size – 2' x 3' x 5'

Summary

• Relevance:

 Home fueling is a viable pathway on the continuum of options. Home fueling grows organically with vehicle introduction. PEM electrolysis technology is ideal for small footprints and easy maintenance.

• Approach:

 Execute development of key enabling technologies including PEM electrolysis cell stack and balance-of-plant components for 5,000 psi operation. Draw upon *Proton's experience with commercial products* to inform the design and safety analysis.

• Technical Accomplishments:

 Completed prototype system fabrication and checkout. Completed fullscale cell pressure testing. Completed cell stack design and component fabrication.

Collaborations:

- ORNL supported analysis of metallic separator durability.

• Proposed Future Work:

Integrated testing of cell stack in system. Packaging optimization and fueling demonstrations.

