

Solar Energy Utilization Using (1) TiO₂ nanotubes (T_NT), (2) T_NT /CdSe, and (3) TiO₂/CdS/Pt P.I. Vaidyanathan (Ravi) Subramanian (University of Nevada, Reno)

Presenter | Vaidyanathan (Ravi) Subramanian May, 2012 | Project ID # PD077 (This presentation does not contain any proprietary, confidential, or otherwise restricted information)

Timeline

- 1/1/2011-12/31/2011
- 1/1/2012- 9/30/2012 (no cost extension)

Budget*

- Total funding
 - 258,235.00 (UNR)
 - 53,402.00 (cost share)

Personnel

- 1 post-doc
- 2 graduate students
- 4 undergraduates

Barriers

- Develop cost effective approach to growing TiO₂ nanotubes with added architectural flexibility
- Improve efficacy of coating visible light harvesters
- Determine effects of pollutants in hydrogen generation using traditional photocatalysts

Partners

- Desert Research Institute
- University of Nevada, Reno

 $\mathbf{\overline{J}}$

Milestones

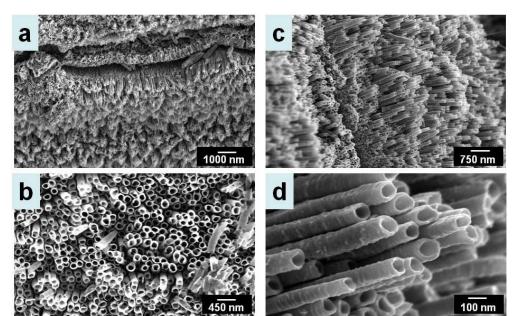
Barriers	Progress	% activity completed
(Barrier 1) Cost effective approach	 Method development Testing the nanotubes physical features Testing the photocatalytic activity 	100 % (manuscript published)
(Barrier 2) Improve coating process	 Solvothermal coating Examining coat density Develop mechanism Test activity 	80 % (manuscript submitted)
(Barrier 3) H ₂ generation + waste treatment	 Develop assembly Gather preliminary data How does pollutant influence H₂ yield Mechanistic studies 	60 % (Research continuing)

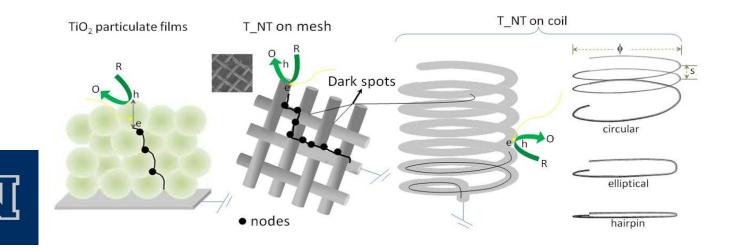
Barrier 1 – Cost (Method for synthesis)

Objective - evaluate if the nanotubes can be grown on flexible substrates with minimal usage of electrolyte

 Goal – To study the anodization conditions with the intent to minimize Ti and electrolyte usage (reduce cost) without compromising on TiO₂ nanotube quality and properties

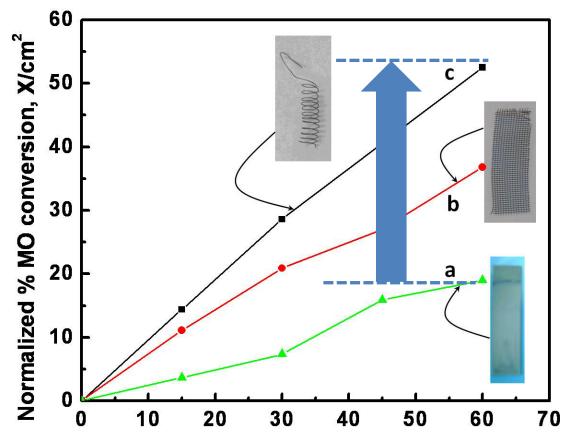
Performance measure	Method I	Method II	Outcome
Electrolyte volume	~300 ml	~25 ml	TiO ₂ nanotubes
Geometry independence	foil	coil	TiO ₂ nanotubes





Barrier 1 – Cost (SEM images)

- TiO₂ nanotubes (T_NT) formed on coil using 25 ml electrolyte instead of 300 ml electrolyte
- Progressive images indicate clearly the formation of nanotubes
- Similar nanotubes have been demonstrated on foil, mesh, and wires

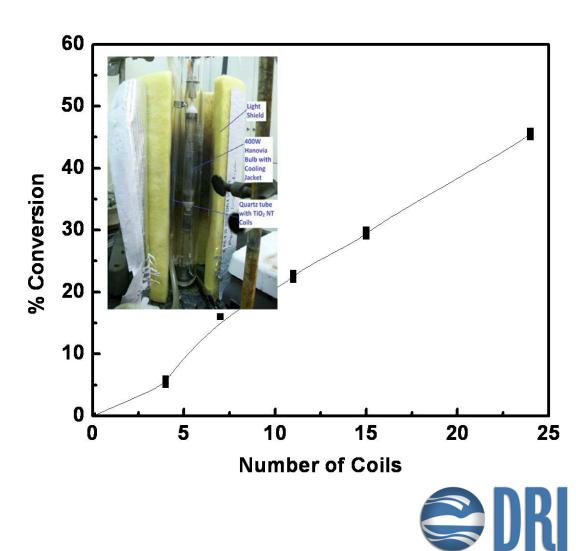


Barrier 1 – Cost (Photoactivity: Liquid)

- Photoactivity of the T_NT on coil is compared with nanotubes on other substrates prepared using method I
- Test compound: methyl orange
- x 2.5 times increase in photodegradation is observed with T_NT on coils.

[Normalized to geometrical surface area of illumination]

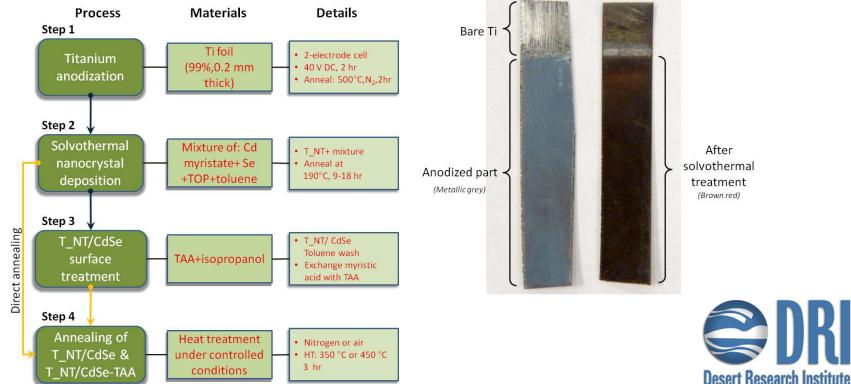
Time, min



Barrier 1 – Cost (Photoactivity: Gas phase)

Desert Research Institute

- The applicability of T_NT as a photocatalyst on coil for gas phase catalysis has also been studied
- Test compound: 2,3-butanedione
- Up to 40% conversion of the gas phase pollutant is demonstrated (unoptimized) in a single pass gas phase photocatalytic reactor

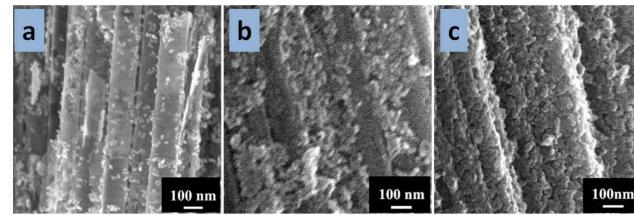


Barrier 2 – Coating (Solvothermal approach)

Objective – To develop an efficient coating strategy

- Goal To determine if a solvothermal approach with a ligand treatment can form dense CdS deposits on the T_NT walls
- A review of literature followed by compilation of an article has been carried out as the basis for this research

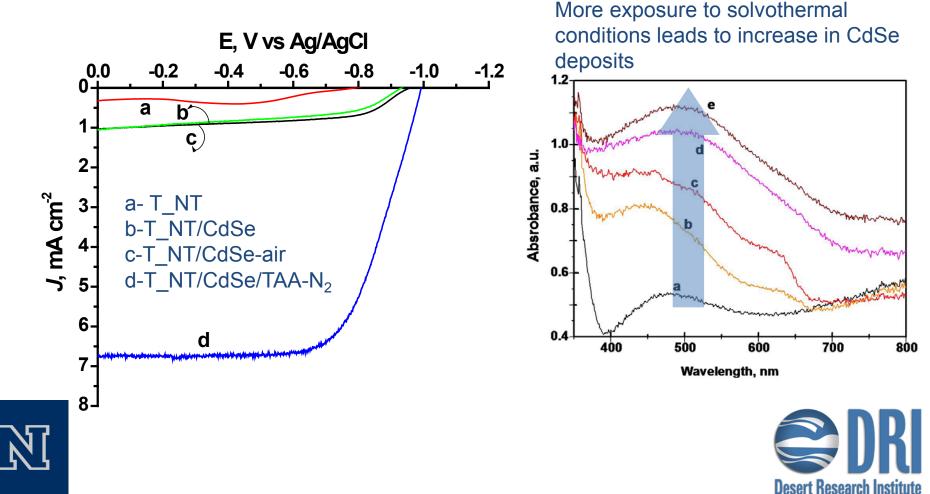
Barrier 2 – Coating (SEM images)


100 nm

6

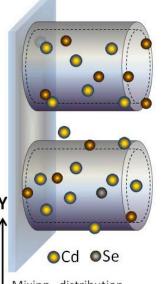
100 nm

- The SEM images indicate a uniform coating on the T_NT walls under solvothermal conditions
- A ligand treatment assists with maintaining dense coating and particle size
 - a-T_NT/CdSe
 - b-T_NT/CdSe-no exchange
 - c- T_NT/CdSe-ligand exchange

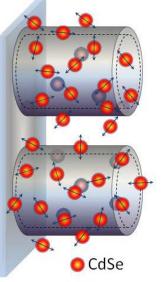

100 nm

Barrier 2 – Coating (optical & electronic activity)

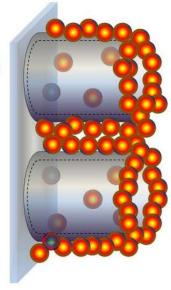
 The CdSe deposits via a solvothermal approach followed by a ligand exchange gives maximum photocurrent



Barrier 2 – Coating (Coating mechanism)



 A 4-step process is believed to take place during CdSe deposition on T_NT when the solvothermal treatment is followed by annealing under nitrogen after ligand treatment

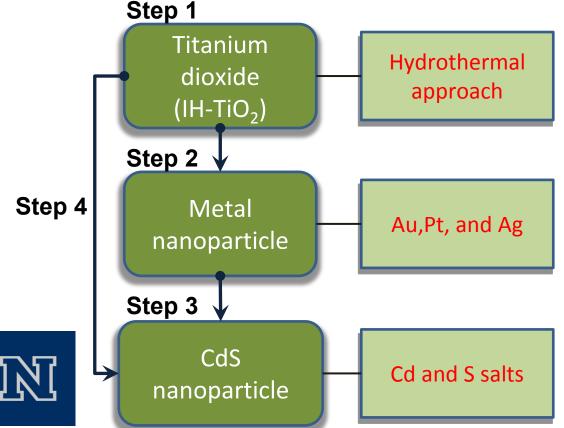


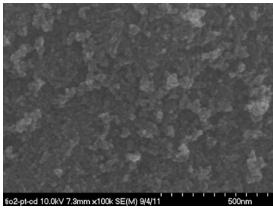
Mixing, distribution, and interaction between Cd and Se ions to form CdSe nanocrystals

⇒X

Formation of CdSe nancrystals and its random movement along XY axes in and around T_NT over 6 hrs Growth of the preformed CdSe followed by its predominantly lateral movement along X axis

Orderly assembly and compaction of the preformed CdSe nanocrystals along T_NT walls between 6-12 hrs.

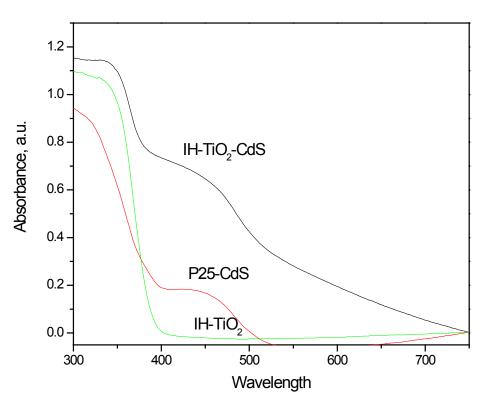



Barrier 3 – Fuel+waste

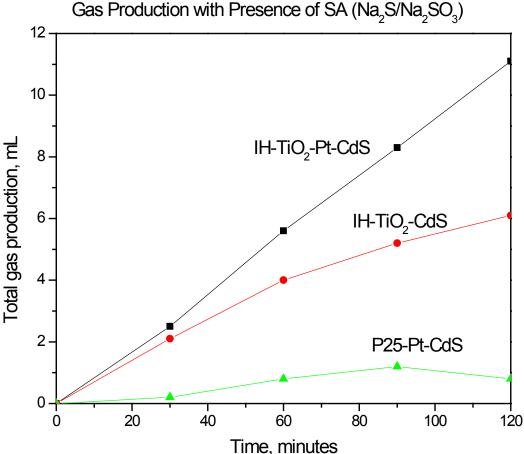
Comparison (Program (Program (Photocatalyst synthesis))
 Objective – To examine strategies to improve photocatalytic hydrogen generation and waste treatment - simultaneously

 Goal – To determine if a photocatalyst can produce hydrogen and photodegrade a liquid phase pollutant

Sample	Surface Area (m ² /g)	
IH-TiO ₂	~130	
P25	~53	

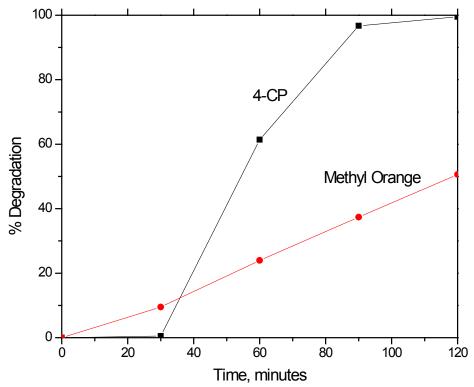


- The IH TiO₂ allows for greater deposition of CdS (due to higher surface area)
- The absorbance (of CdSe) is also noticed to increase farther into the visible part of the solar spectrum



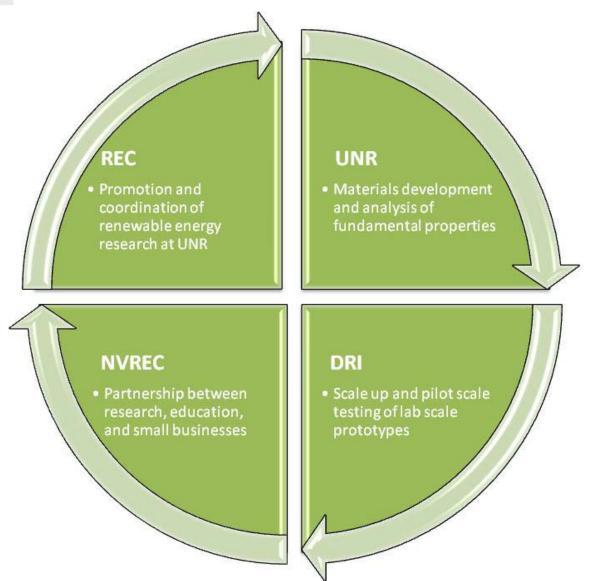
Barrier 3 – Fuel+waste (H₂ generation data)

- The IH-TiO₂-Pt-CdS photocatalyst shows the maximum hydrogen yield
- The electrolyte has counter sulfide ions to maintain the stability of CdS



Barrier 3 – Fuel+waste (Photodegradation)

- The addition of pollutants such as methyl orange or 4-chlorophenol shows pollutant degradation indicating a synergistic activity of the photocatalyst
- How does this assist with hydrogen generation?
- What is the stability of the photocatalyst?



Collaborations

- Relevance Examine feasibility of
 - □ synthesizing nanotubes efficiently,
 - depositing visible light harvesting material effectively, and
 - testing hydrogen generation and photodegradation simultaneously.
- Approach Proof-of-concept has been demonstrated using
 - Iow volume solvent for nanotube synthesis and
 - solvothermal process for CdS deposition.
- Technical accomplishments Results suggest that
 - □ T_NT nanotubes can be synthesized effectively using a reduced electrolyte volume.
 - □ solvothermal is a good technique to deposit and pack light harvesting chalcogenide.
 - Preliminary data indicates hydrogen production and photodegradation could be possible simultaneously.

Collaboration

- DRI Alan Gertler
- UNR Ravi Subramanian

