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Overview

Timeline Barriers
 Project Start: 19 June 2010 ° Barriers addressed
* Project End: 18 Aug 2012 G: Capital Cost
. Percent complete: 40% H: System Efficiency
Table 3.1.4. Technical Targets: Distributed Water Electrolysis Hydrogen Production * =
w152 mn
Hydrogen Cost $/gge 515 480 3.10 <3.00
. i Slgge | NIA 120 0.70 0.30
Electrolyzer Capital Cost S N/A 865 400 15
BUdget Electrolyzer Energy Efficiency’ % (LHV) | N/A 62 f9 74
» Total project funding
— DOE share: $1,000,000 Partners
* Planned Funding for FY12 « 3M
~ DOE share: $500,000 . yUniversity of Wyoming
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Relevance: Hydrogen Value Proposition

» Stored H, can drive multiple revenue streams
— Transportation fuel
— High value chemical streams
— Green production of fertilizer
— Regeneration of electricity through fuel cell use
— Supplement to natural gas for higher efficiency

- Easily scalable; can independently scale
charge, discharge, and storage capability

» Centralized and distributed options to capture
energy currently not being utilized
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Relevance: 50,000 kg/day concept

- Renewable energy growing rapidly world-wide in
both wind and solar

* Need a continuum of options and hybrid
solutions including grid-scale H, production

—_—— 25t010 MW PEM
Hydrogen Plant Concept
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Relevance: Overall Cost of Electrolysis

* Precious metal costs at 50,000 kg/day are
prohibitive at current loadings

— Goal: Reduce by order of magnitude

» Operating costs driven by efficiency

— Oxygen overpotential and membrane ionic resistance
drive 90% of stack efficiency losses

— Goal: Increase catalyst activity by 10x
— Goal: Decrease membrane thickness by 50%

- Balance of plant not yet defined at centralized scale
— Goal: Develop conceptual plant
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Relevance: Project Objectives

* |dentify optimal anode catalyst composition
through combinatorial exploration

- Reduce catalyst loading through improved
processes and NSTF structures

» Demonstrate 1000 hours system operation at
>69% efficiency

» Develop 50,000 kg/day concept design
» Perform cost and environmental analysis

:,...... pRDTD?E!:l! Page 6

—



Approach

Task Breakdown
» Task 1.0 Project Kickoff
Task 2.0 MEA Optimization

— 2.1 — Catalyst Composition Optimization

— 2.2 — MEA Performance Evaluation

— 2.3 — Electrode structure and catalyst utilization
— 2.4 — Estimation of Efficiency

Task 3.0 Scale-up of MEA Configuration

— 3.1 — Process Development for Wider MEA Format
— 3.2 — Fabrication and Test of Larger MEA Format

Task 4.0 50,000 kg/day Conceptual Design
Task 5.0 Cost Analysis and Environmental Impact
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Technical Accomplishments

Task | Task Description Progress Notes Completion
1.0 Project Kickoff 100%
MEA * Developed ink formulation for 50%
2.0 o . catalyst loading reduction 30%
Optlmlzatlon + Combinatorial synthesis set up
MEA
3.0 Configuration » Tooling procured 15%
Scale Up
+ System components identified
4.0 50,000 kg/day « Preliminary costs established 80%
Concept « Component sizing completed
Cost Analysis/
5.0 Environmental  Pending completion of Task 4.1
Analysis
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Technical Accomplishments
Task 2.0: MEA Optimization

* Increased electrochemical efficiency and cost-
reductions through multiple approaches

— Proton: Reformulation of electrode ink, enabling
reduced catalyst loadings through better utilization

— University of Wyoming: Combinatorial study of
oxygen evolution catalyst for efficiency optimization.

— 3M: Development of NSTF (Nanostructured Thin
Film) electrode for further loading reductions on
optimized composition.

 All efforts will be combined with thinner
alternative membrane.
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Technical Accomplishments
Task 2.0: MEA Optimization (Pathway
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Technical Accomplishments
Task 2.0: MEA Optimization

Reformulated Anode Electrode
Mass Activity at 50C
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Technical Accomplishments
Task 2.0: MEA Optimization

LHV Cell Efficiency Improvement at 1.0 A/cm? and 80°C
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Technical Accomplishments
Task 2.0: MEA Optimization

MEA Material Cost Reductions Through MEA Optimization
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Technical Accomplishments
Optimization Discrete Compositions

The research grade materials ink jet printer B N - - - Stabilizing Metal
uses water soluble precursors of the metal Low Percentage

oxides of interest to print discrete
compositions of materials as well as - . . = . -
gradients of materials.

B B B - - -v

Stabilizing Metal
High Percentage
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Technical Accomplishments
Current Voltage Analysis

Comparison of Alternative Ternary versus Proton Standard

1.7
1.65 .
] Baseline
& Alt. Ternary
1.6

Potential, V 1.55
@ Series1

W Series2

1.5
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Technical Accomplishments
Ternary Gradient Mixtures

Three ternary mixtures immersed in electrolyte
indicator solution.

FTO Substrate

Gradients of different metals printed in

triangular shapes
Each vertex represents 100% pure material

Edge opposite a vertex represents 0% of
that material Three mixtures during the fluorescent screening
process as potential is applied. Fluorescence
indicates a localized increase in the proton
concentration preceding oxygen evolution.
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Technical Accomplishments
MEA Optimization: 3M

Membrane Development:

« Current process capabilities evaluated for Proton cell widths.
Process validation experiment on schedule.

«  Successful lamination of multi-layer membrane construction has
yielded thicker membrane required for electrolysis testing.

Catalyst Development
« First set of CCM'’s supplied to Proton Onsite, on test to investigate:
— NSTF electrode formation being assessed with alternative membrane

— Applicable noble metal loading range with NSTF technology platform
base-lined and established based on diminishing returns on
performance and manufacturability.
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Technical Accomplishments
Task 4.0: System Design

Major System Components Evaluated and Sized

» Stacks

» Power Supplies and Power Electronics
» Water and Oxygen Management

* Hydrogen Gas Management

» Water Deionization Treatment Plant
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Component Sizing:
» Economies of Scale:
— Fewer no. of large components is less expensive than
more components of smaller size (in general)
» Large Component Availability:

— Can get most components in sizes where just 1 or 1
“set” (redundant items) is needed (i.e. least capital
expense)

— Largest Component: a cooling tower, may be greatly
reduced or eliminated if local natural sink can be used

* Detailed Studies Needed:

— Component reliability vs. impact to capital cost when
determining component redundancy.
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Technical Accomplishments
Task 4.0: System Design

Cell Stack Bank

Hydrogen Management
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Technical Accomplishments

Task 5.0: Cost Analysis
* Phase 1 Approach: o

— Extrapolated cost from
existing systems

— 1500 kg/day module

— Projected result: $0.56/kg
production capital cost
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» Phase 2 Approach: System Capacity (kg Ho/day)
— Quoted major subcomponents based on system design
— Same stack module as above
— Result: $0.49/kg production capital cost

F'RI:ITI:IN Page 21

\. ON SITE

——



Future Work: Proton

« Continue Phase | work on
alternative catalyst blends
for cost-reduction and
efficiency improvements

— Refine compositional matrix
and evaluate

— Scale-up synthesis for larger
cell stack platform

- 50,000 kg/day Concept
— Add stack Balance of Materials (BOM) as inputs
— Conduct environmental impact assessment

— Update with MEA electrical efficiencies and operational
data as testing progresses
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Future Work: 3M

Membrane Development

Work will continue to fabricate 3M 800 EW membranes for scale-
up to 550 cm? MEA configuration through:

— Direct casting
— Multi-layer lamination (successfully done for 50 cm?)
— CCM fabrication on roll-to-roll equipment

Catalyst Development

- Establish preferred target catalyst loading levels for both cathode
and anode electrodes

« Verify NSTF-Pt5,lr5, alloy baseline with down-selected PEM

« Optimize catalyst performance and durability:
— 3M’s binary composition refinement; limited ternary alloys
— Application of post-deposition surface energy treatments (3M —SET process)

* Duplicate optimized catalyst composition in NSTF format
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Summary

Relevance: Demonstrates technology pathway to centralized PEM
electrolysis at acceptable cost and efficiency

Approach: Optimize catalyst utilization and activity for 10X loading
reduction; minimize BoP cost through scale up

Technical Accomplishments:
— Concept review complete for 50% reduction in PGM content
— New blends synthesized for activity optimization
— 50,000 kg/day concept developed and quoted

Collaborations:

— U. Wyoming: Combinatorial catalyst screening
— 3M: NSTF anode development

Proposed Future Work:
— Manufacturing transition for initial reduction in catalyst loading
— Catalyst activity and durability screening
— Electrode and stack scale up
— System environmental assessment
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