

U.S. DEPARTMENT OF

Hydrogen Storage Overview

Ned T. Stetson

2012 Annual Merit Review and Peer Evaluation Meeting (May 15, 2012)

<u>Goal</u>: Develop and demonstrate viable hydrogen storage technologies for transportation, stationary, material handling, and portable power applications

Develop storage systems that meets <u>all</u> DOE system targets simultaneously.

- System Engineering / Systems Analysis
 - Demonstrate the technologies required to achieve the 2017 DOE on-board vehicle hydrogen storage goals
 - Continue storage system analysis/projections for advanced storage system capabilities & development of system models for on-board storage systems
 - Roll-out performance and cost targets for early market applications
 - Initiate projects through SBIR on early market applications

• R&D on materials for breakthrough storage technologies

- Increased focus on carbon fiber to reduce the cost of physical storage systems
- Continue new hydrogen storage material discovery R&D for advanced storage systems
- Strengthen coordination between basic & applied research within DOE and across agencies

Challenges: Light duty Vehicles

Storage to enable a driving range of greater than 300 miles, while meeting vehicular packaging, cost and performance requirements across all vehicle platforms to achieve significant market penetration

Near-term Option

Compressed gas storage offers a near-term option for initial vehicle commercialization* and early markets

- <u>Cost</u> of composite tank is challenging
- > 75% of the cost is projected to be due to the carbon fiber layer with 50% of the CF cost due to the precursor
- Other applications are being commercialized now where H₂ storage is a barrier

Long-term Options

Materials-based solutions targeted to meet all on-board storage targets simultaneously

- Improving gravimetric and volumetric capacities
- Having sufficient kinetics within appropriate temperature and pressure ranges
- Lowering cost of overall engineered systems

*: Greater than a 400 mile driving range independently validated for a Toyota Advanced FCEV with 700 bar Type IV composite cylinders, http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/toyota_fchv-adv_range_verification.pdf

Current Status

Analyses show 2017 onboard vehicle gravimetric and volumetric targets are within reach of some H₂ Storage technologies!

Storage Targets	Gravimetric kWh/kg (kg H ₂ /kg system)	Volumetric kWh/L (kg H ₂ /L system)	Costs* \$/kWh net (\$/kg H ₂)
2010	1.5	0.9	TBD
2010	(0.045)	(0.028)	(TBD)
2017	1.8	1.3	TBD
2017	(0.055)	(0.040)	(TBD)
liltimata	2.5	2.3	TBD
Onimate	(0.075)	(0.070)	(TBD)
Current Status	Gravimetric (kWh/kg sys)	Volumetric (kWh/L sys)	Costs (\$/kWh)
Current Status 700 bar compressed (Type IV) ^a	Gravimetric (kWh/kg sys) 1.7	Volumetric (kWh/L sys) 0.9	Costs (\$/kWh) 18.9
Current Status 700 bar compressed (Type IV) ^a 350 bar compressed (Type IV) ^a	Gravimetric (kWh/kg sys) 1.7 1.8	Volumetric (kWh/L sys) 0.9 0.6	Costs (\$/kWh) 18.9 15.5
Current Status 700 bar compressed (Type IV) ^a 350 bar compressed (Type IV) ^a Cryo-compressed (276 bar) ^a	Gravimetric (kWh/kg sys) 1.7 1.8 1.9	Volumetric (kWh/L sys) 0.9 0.6 1.4	Costs (\$/kWh) 18.9 15.5 12.0
Current Status 700 bar compressed (Type IV) ^a 350 bar compressed (Type IV) ^a Cryo-compressed (276 bar) ^a Metal Hydride (NaAlH ₄) ^b	Gravimetric (kWh/kg sys) 1.7 1.8 1.9 0.4	Volumetric (kWh/L sys) 0.9 0.6 1.4 0.4	Costs (\$/kWh) 18.9 15.5 12.0 11.3
Current Status 700 bar compressed (Type IV) ^a 350 bar compressed (Type IV) ^a Cryo-compressed (276 bar) ^a Metal Hydride (NaAlH ₄) ^b Sorbent (MOF-5, 200 bar) ^b	Gravimetric (kWh/kg sys) 1.7 1.8 1.9 0.4 1.7	Volumetric (kWh/L sys) 0.9 0.6 1.4 0.4 0.9	Costs (\$/kWh) 18.9 15.5 12.0 11.3 18.0

* Cost targets are being finalized and are expected to be released soon.

^a based on TIAX/ANL projections, ^b based on Hydrogen Storage Engineering Center of Excellence projections

Challenges: Preliminary Targets for MHE

Hydrogen fuel cells are finding acceptance in material handling applications (e.g., forklifts), however high-pressure H₂ infrastructure limits deployment

Storage Parameter	Units	2015	2020
System Gravimetric Capacity:	kWh/kg	NA	NA
Usable, specific-energy from H ₂ (net useful energy/max system mass)	(kg H ₂ /kg system)	NA	NA
System Volumetric Capacity:	kWh/L	0.7	1.3
Usable energy density from H ₂ (net useful energy/max system volume)	(kg H ₂ /L system)	(0.02)	(0.04)
Storage System Cost (based on LHV of delivered Ha):	\$/kWh	20	15
	(\$/kg H ₂)	667	500
Durability/Operability:			
• Operational cycle life (1/4 tank to full)	Cycles	5000 (5 yr)	10000 (10 yr)
 Min delivery pressure from storage system; 	bar (abs)	3	3
Charging / Discharging Rates:	H ₂ capacity	2 kg	
System fill time	min	5	3
	(kg H₂/min)	0.4	0.7
Minimum full flow rate	(g/s)/kW	0.02	0.02
Shock and Vibration	g	3	15

Preliminary H₂ storage targets developed for Material Handling Equipment, RFI issued to gather input from stakeholders on appropriateness of targets.

Challenges: Targets for Portable Power

Portable Hydrogen Fuel Cell appliances are coming to market, hydrogen storage is a key for their successful commercialization

Storage Parameter	Units	2015	2020
System Gravimetric Capacity:	kWh/kg	0.3	1.0
Usable, specific-energy from H ₂ (net useful energy/max system mass)	(kg H ₂ /kg system)	(0.01)	(0.03)
System Volumetric Capacity:	kWh/L	1.0	1.7
Usable energy density from H ₂ (net useful energy/max system volume)	(kg H ₂ /L system)	(0.03)	(0.05)
Storage System Cost (based on LHV of delivered H):	\$/Wh	2.0	1.0
Storage System Cost (based on LHV of delivered H2).	(\$/g H ₂)	67	33
Durability/Operability:		Single use / Rechargeable	
Operational cycle life (1/4 tank to full)	Cycles	NA / 25	NA / 100
 Min delivery pressure from storage system; 	bar (abs)	1.5	1.5
 Max delivery pressure from storage system 	bar (abs)	3	3
Environmental Health & Safety: · Permeation & leakage · Toxicity · Safety		Meets ISO-16 62282; or oth stan	6111:2008; IEC ner applicable dards

Preliminary H₂ storage targets developed for Portable Power, RFI issued to gather input from stakeholders on appropriateness of targets.

Hydrogen Storage Budget

FY 2013 Request = \$13M

FY 2012 Appropriation = \$17.4M

EMPHASIS

- Systems approach through the Engineering CoE, in collaboration with independent materials development projects, to achieve light-duty vehicle targets
- Continued close coordination with Basic Energy Science in 2012 & 2013 and improve coordination with National Science Foundation, ARPA-e, and Energy Frontier Research Centers activities
- Focus on cost reduction for high pressure tanks
- Increased analysis efforts for low to high production volumes
- Increased emphasis on early market storage applications

2012 Progress: Output from the Materials CoEs

Getting the word out on the progress made in developing and understanding hydrogen storage material properties!

Final reports and Executive Summaries from the 3 Hydrogen Storage Materials CoEs available through the DOE website: http://www1.eere.energy.gov/hydrogenandf uelcells/hydrogen_publications.html#h2_st orage Publically available, searchable database on Hydrogen Storage Materials Properties launched: <u>http://hydrogenmaterialssearch.govtools.us/</u>

Still looking to populate it with more data!

2012 Progress: Getting tools out for public use

Tanks: Cost Analysis & Progress

Liner Blow Mole Tooling.

He Fill & Leak Tes

Manufacturing

Volumetric

Water Test

Manufacturin

Full Cure

Manufacturing B-Stage Cure

(Cure #1)

Manufacturing

Fiber Winding (We

Liner Annealing

Manufacturing

Tank costs come down with high volume manufacturing, but still too high! Low-cost PAN precursors offer opportunity to reduce CF costs by up to 30%.

Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks

Project Lead: Pacific Northwest National Laboratory – PI: Kevin Simmons

- Partners: Ford Motor Company, Lincoln Composites, Toray Carbon Fibers America, Inc. and AOC Inc.,
- Coordinated approach for compressed H₂ tank costs reduction focuses on:
 - improved carbon fiber composite materials; design and manufacture of hydrogen storage tanks;
 - investigates use of "cold" hydrogen, including impact on the infrastructure;
 - targets cost reduction by more than 1/3 compared to current projections.

2012 Progress: HSECoE – Status of Metal Hydride Systems

No metal hydride material currently exists that will allow a complete system to meet all key DOE system performance targets for onboard vehicle applications

No-Go Decision made for Metal Hydride system within the HSECoE, this does not preclude further metal hydride materials development.

2012 Progress: Predicting Metal Hydride Requirements - effect of reaction enthalpy

- Attributes
 - Very simple system.
 - Fuel cell waste heat stream used
 - No separate buffer tank: use H₂ in pores.
- Media Characteristics
- $\Delta H = 27 \text{ kJ/mol-H}_2 (T_{5 \text{ bar}} = 20.7 \text{ °C})$
 - 11 wt.% material capacity
- Results

- Satisfies all targets.
- On-board efficiency: ~100%
- System: 101 kg, 124 liters

- Attributes
 - Mix of fuel cell coolant and recycled fluid used for warm-up and to maintain T_{tank}.
 - Media Characteristics
 - $\Delta H = -40 \text{ kJ/mol-H}_2 (T_{5 \text{ bar}} = 122.8 \text{ °C})$
 - 17 wt.% pure material capacity
- Results
 - Satisfies targets except system efficiency.
 - On-board efficiency: ~81%
 - System: 103 kg, 126 liters
 - Operating at 130°C delivers 5.4 kg-H₂ (delivered + combusted: 6.6 kg-H₂)

2012 Progress: MH Sensitivity Analysis: System Gravimetric & Volumetric Capacity

System Volumetric Capacity

DOE 2017 targets, gravimetric and volumetric capacity, respectively

Sensitivity Parameters (Baseline case)

Wf matl = 11%٠

.

- Heat of reaction = 27 kJ/molH_2 ٠
- Wf matl target / wf matl net = 85%
- Charging time = 4 min

- Bulk density = 800 kg/m^3
- BOP weight / tank weight = 17% ٠ BOP volume / tank volume = 4%
- Thermal conductivity = 9 W/mK •

2012 Progress: Status of MH materials to meet onboard storage requirements

Material property requirements can be determined to focus material discovery efforts

2012 Progress: HSECoE – Cryo-sorbent Systems

Current cryo-sorbent system designs are projected to meet most DOE 2017 performance targets for onboard vehicle applications

2012 Progress: HSECoE – Sorbent System Improvement Pathways

Combined system and material improvements show potential path to exceed 2017 onboard performance targets.

Step	Description
А	Phase 1 Baseline – Activated Carbon in a Composite Tank; Flow-Through Cooling with a Resistance Heater; Full Conditions of 80 K, 200 bar
В	Change Material to Powdered MOF-5
С	Change Full Tank Conditions to 40 K, 60 bar
D	Change Tank to Type I Aluminum (lower cost)
E	Change to Compacted MOF-5 (0.32 g/cc)
F	Increase Compacted MOF-5 thermal conductivity by an order of magnitude
G	Change from Flow-Through Cooling with a Resistance Heater to the M.A.T.I.
Н	Reduce mass and volume of BOP components by 25%
I	Improve material capacity by 10%
J	Improve material capacity by 20%

17

U.S. DEPARTMENT OF

2012 Progress: 2 New Projects – Sorbents

Hydrogen Storage in engineered MOFs and nano-confined liquids optimized for onboard hydrogen storage applications

Project Lead: Lawrence Berkeley National Laboratory – PI: Jeffery Long

Partners: NIST and GM

Description: a theory-guided approach to synthesize novel materials with high hydrogen adsorption capacities

Project Lead: HRL Laboratories, LLC – PI: John Vajo

Description: Investigates engineered liquids to efficiently absorb and release hydrogen gas;

rrrrr

2012 Progress: Improving Sorbents

3K-H60 (I,B), 1-step doping, annealed at 1000 C

Achieved ~9% Boron Doping with <15% Reduction in Surface Area Leading to Higher Hydrogen Binding Energies and Uptake

6.7

2100

19

2012 Progress: Spillover Taskforce Update

International taskforce confirms excess adsorption at room temperature can be increased by spillover effect

.S. DEPARTMENT OF

anak

Achievements:

- Demonstrated reproducibility between laboratories synthesis and measurements
- Demonstrated > 15% enhancement in room-temperature adsorption on metal-doped sorbents – RuBC_x and Pd-TC
- Demonstrated spectroscopic evidence of reversible substrate-hydrogen interactions – DRIFTS, NMR and Inelastic Neutron Scattering

2012 Progress: HSECoE – Status of Chemical Hydrogen Systems

ENERGY

Endo- and Exothermic release material systems can meet most key DOE system performance targets for onboard vehicle applications

Projections for Exothermic (Ammonia Borane) and Endothermic (Alane) Hydrogen Release Systems – 50% mass loaded fluids

Off-board regeneration efficiency is still an issue

2012 Progress: HSECoE – Chemical Hydrogen System Improvement Pathways Combined system and material improvements show potential path to exceed DOE 2017 onboard performance targets.

Step	Description
Α	Phase 1 Baseline: 50:50 Fluid composition
В	Change from steel shell ballast tank to aluminum
С	Reduce HX from 76 kW to 38 kW
D	Reduce H ₂ Wetted Tubing
Е	Low Mass Borazine Scrubber
F	Low Mass Ammonia Scrubber
G	Increase AB loading from 50 to 65 wt. %
н	Increase AB loading from 65 to 80 wt. %

2012 Progress: Development of fluid AB materials

Liquid-Slurry Chemical Hydrogen Storage Development (AB Slurry)

Down-select to AB silicone oil slurry 45wt% AB slurry:~7wt% H₂

Material remains a liquid-slurry before and after H-release Fresh slurry no settling/flocculation for 3+ months Spent slurry settling within several hours

	AB slurry before H-release	AB slurry after H-release	Measured Temp. (°C)
Plastic viscosity (cP)	~ 617	~ 442	25
Yield stress (Pa)	~ 48	~ 3.7	25

Fluid Phase H₂ Storage Material Development (Liquid AB)

New Additives Synthesized

U.S. DEPARTMENT OF

Additive amineboranes have 3-4 wt. % usable H_2 and maintain fluid phase.

Picture @ Room Temperature

20 wt. %AB in hexyIAB (6.0 wt. % H₂) transforms from a slurry to liquid upon dehydrogenation

Source: LANL

2012 Progress: New Project – Liquid Carriers

Novel Carbon (C) – Boron (B) – Nitrogen (N) containing hydrogen storage materials as liquid hydrogen carriers

Project Lead: University of Oregon – PI: Shih-Yuan Liu

Partners: Pacific Northwest National Laboratory, Univ. of Alabama, Protonex Technology Corp.

Description: Develop novel boron and nitrogen-doped liquid organic materials for chemical hydrogen storage

- remain liquid throughout all phases of hydrogenation;
- capable of hydrogen release and regeneration within operational temperature and pressure ranges for target applications;
- enable liquid refueling.

Summary

Summary of activities and upcoming milestones

Physical Storage

- Projects underway to reduce the cost of carbon fiber precursors
- Initiated new efforts through SBIR and Funding Opportunity Announcement topics
 Material-based Storage
- Hydrogen Storage Engineering Center of Excellence is validating their modeled projections
 and identifying improvements over the current baseline materials-based systems
- Continued to improve materials-based performance through independent projects
- Finalizing performance targets for material handling equipment and portable power

The Hydrogen Storage Team

U.S. DEPARTMENT OF

For more information contact:

Ned Stetson - Team Lead 202-586-9995 ned.stetson@ee.doe.gov			
Grace Ordaz 202-586-8350 grace.ordaz@ee.doe.gov	Jesse Adams 720-356-1421 jesse.adams@go.doe.gov		
Scott McWhorter On Assignment from SRNL 202-586-7009 scott.mcwhorter@ee.doe.gov	<i>Katie Randolph</i> 720-356-1759 katie.randolph@go.doe.gov		
Kathleen O'Malley Support contractor 202-586-4786 kathleen.o'malley@ee.doe.gov	Coming soon on assignment from CalTech - Channing Ahn!		

- This is a review, not a conference.
- Presentations will begin precisely at scheduled times.
- Talks will be 20 minutes and Q&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
- Please mute all cell phones and other portable devices.
- Photography and audio and video recording are not permitted.

Deadline to submit your reviews is May 25th at 5:00 pm EDT.

- ORISE personnel are available on-site for assistance.
 - Reviewer Lab Hours: Tuesday Thursday, 7:30 am 8:30 pm; Friday 7:30 am – 1:00 pm.
 - Reviewer Lab Locations:
 - Crystal Gateway Hotel—*Rosslyn Room* (downstairs, on Lobby level)
 - Crystal City Hotel—*Roosevelt Boardroom* (next to Salon A)
- Reviewers are invited to a brief feedback session at 3:45 pm Thursday (after last storage talk), in this room.