Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

Bart A. van Hassel , J.M. Pasini, R.C. McGee, J.R. Karra, A.M. Limarga, J. Holowczak, I. Fedchenia, J. Khalil, J.C. Rampone and R. Brown

United Technologies Research Center

DOE Hydrogen Program Annual Merit Review Washington, DC May 15, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: February 2009
- End Phase 1: March 2011
- End Phase 2: June 2013
- End Phase 3 / Project: June 2014
- Percent complete: 55% (spending)

Budget

- \$5.91M Total Program
 - Reflects budget reduction with \$0.95M
 - \$4.58M DOE
 - \$1.33M (22.5%) UTRC
- FY09: \$600k DOE
- FY10: \$1,000k DOE
- FY11: \$750k DOE
- FY12: \$750k DOE

Barriers*

- A J
- A. System Weight & Volume
- D. Durability/Operability
- J. Thermal Management

Targets*

• All

Partners

* DOE EERE HFCIT Program Multi-year Plan for Storage

Objectives

 Design of materials based vehicular hydrogen storage systems that will allow for a driving range of greater than 300 miles

Performance Measure	Units	2010	2017	Ultimate
System Gravimetric Capacity	g H ₂ /kg system	45	55	75
System Volumetric Capacity	g H ₂ /L system	28	40	70
System fill time (for 5 kg H_2)	minutes	4.2	3.3	2.5
Fuel Purity	% H ₂	SAE J2719 guid	deline (99.97	% dry basis)

- Major project impact:
 - Integrated Power Plant Storage System Modeling:
 - Specified on-board reversible metal hydride material requirements.
 Diverted such a system to different markets.
 - UTRC oversees modeling framework on consistent platform
 - Gas/Liquid separation (GLS) of liquid chemical hydride
 - H₂ quality (NH₃ adsorbent, particulate filter)
 - Compaction/Materials thermal conductivity enhancement
 - Risk Analysis: Failure mode and effect analysis (FMEA)

HSECOE

Approach

Approach

Collaborations

IPPSSM Framework Application

On-Board Reversible Metal Hydrides Diverted to Different Markets

Two qualitatively different systems:

- For higher H₂ pressure materials: use the fuel cell waste heat stream
- Very simple system: selected to determine the minimum material gravimetric capacity needed.
- No separate buffer tank: use H₂ in pores.

- For lower H₂ pressure materials: Mix of fuel cell coolant, catalytic heater and recycled fluid used for warm-up and to maintain T_{tank}.
- Increased material capacity to compensate for combusted H₂ and heavier BOP.
- No separate buffer tank: use H₂ in pores.

HSECOE

Analysis anchored in metal hydride databases

System weight and volume

- Allowable (hydride + tank) values
 - Using only waste heat
 - With a 8kW combustor loop
- On-board reversible metal hydride:
 - Systems are limited by weight
 - Waste heat from fuel cell:
 - ΔH < 27 to 32 kJ/mol (depends on drive cycle); >11 wt.%
 - Combustor loop:
 - ΔH > 27 to 32 kJ/mol (depends on drive cycle); >16.5 wt.% due to BOP weight increase and H₂ combustion

Available metal hydride materials vs. requirements

(H)

Liquid Chemical Hydride Operability (GLS Validation)

Technical Accomplishments and Progress

- Hydrogen gas must be separated from the liquid spent fuel following the exothermic thermolysis of ammonia borane.
- Designed gas-liquid separator (GLS) test system.

ISECOE

UTRC: Surrogate fluid; LANL&PNNL: Engineering fluid form of AB

Gas-Liquid Separation Test Facility

Technical Accomplishments and Progress Gas/Liquid Separator (GLS) Test Rig Failure Mode and Effect Analysis (FMEA)

Technical Accomplishments and Progress

H₂ Quality (NH₃ Mitigation*)

United Technologies

UQTR

Research Center

* LANL addresses Boron containing impurities

Cryo-Adsorption System Support: SAC Binderless Compaction

 Resulting density is equal to tap density (0.3 g/cm³): No density enhancement 	• Springback limits MaxSorb density to 0.3.g/cm ³ with high weight penalty for thermal conductivity enhancement
Filter Press • Density limited to 0.3 g/cm ³ as only 35 psi pressure in absence of any vibration.	<text></text>

Cryo-Adsorption System Support: Spark Plasma Sintering

Cryo-Adsorption System Support: Conductivity Enhancement

H₂ Quality: Particulate Mitigation

FY12 and FY13 Plan

Based on revised SOPO resulting from budget reduction

		FY12			FY13		
Task	Description	1Q	2Q	3Q	4Q	1Q	2Q _
Project Management	Go/No-Go meeting Phase 2 to Phase 3 transition						77
	F2F-meetings; Tech Team Review; Annual Merit Review						
	Quarterly Financial and Technical Reports	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
IPPSSM	Lead IPPSSM Techical Area (TA)						
	Support Model Integration						
	Maintain Vehicle/Storage System Framework						
	Phase 3 lab test scaling guidance						
Material Property Measurement	Thermal Conductivity Enhancement (Cryo-adsorbent)						
	Viscosity for Gas Liquid Separator Surrogate Material						
Chemical Hydride Operability	Gas/Liquid Separator Validation (<5.4 kg, <19 Liters)						TT -
	Build Experimental Setup						
	Test Gas/Liquid Separator with Liquid AB Surrogate						
	Mitigate Operability Issues						
	NH3 Mitigation Filter (<1.2 kg, <1.6 Liter, 1800 miles)						\checkmark
H2 Quality (SAE J2719)	Milestone						\sim
	Adsorption Isotherm Measurement						
	Scale-up to Phase 2 and Phase 3 Requirements						
	Particulate Mitigation				-		
Risk Assessment	Flammability Test Liquid AB Formulations (provided by						
	LANL/PNNL)						
	Dust Explosion Parameters MOF-5						
	General Support (FMEA/HAZOP)						
Heat Exchanger Development	COMSOL Model Comparison with Experimental Data						

Summary

- Relevance: Design of materials based vehicular hydrogen storage systems that will allow for a driving range of greater than 300 miles
- Approach: Leverage in-house expertise in various engineering disciplines and prior experience with metal hydride system prototyping to advance materials based H₂ storage for automotive applications

Technical Accomplishments and Progress:

- IPPSSM: Completed assessment of on-board reversible metal hydride system and diverted it to different markets.
- Developed on-board reversible metal hydride materials requirements in order for a system to meet the DOE/U.S.Drive 2017 targets.
- Supported FMEA of cryo-adsorption and chemical hydride systems.
- Designed Gas/Liquid Separator (GLS) setup for chemical hydride system.
- Performed FMEA of GLS setup.
- Developed and demonstrated more efficient and regenerable NH₃ filter with high capacity over a wide range of operating temperature.
- Demonstrated binderless compaction of super activated carbon.
- Characterized thermal conductivity anisotropy of MOF-5 + ENG 'worms'.
- Tested performance of SS particulate filters.

HSECOE

Acknowledgement: This material is based upon work supported by the U.S. Department of Energy under Contract No. DE-FC36-09GO19006.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government of any agency thereof.

Technical Back-Up Slides

Month/Year	Partner-Level Go/No-Go
March/2013	Report on ability to develop a gas liquid separator capable of handling 720 mL/min liquid phase and 600 L/min of H ₂ @ STP (40 wt% AB @ 2.35 Eq H ₂ and max H ₂ flow of 0.8 g/s H ₂) fluid having a viscosity less than 1500cp resulting in a gas with less than 100ppm aerosol having a mass less than 5.4 kg and volume less than 19 liters.
	Report on ability to develop an ammonia scrubber with a minimum replacement interval of 1800 miles of driving resulting in a maximum ammonia outlet concentration of 0.1ppm (inlet concentration = 500ppm) having a maximum mass of 1.2 kg and a maximum volume of 1.6 liters.

All targets are equal

Parameter	rameter Unit 2017 System	System +5.6 kg	Compressed*		
			H ₂	350 bar	700 bar
System gravimetric capacity	[wt.%]	5.5	102 kg	117 kg	119 kg
System volumetric capacity	g-H ₂ /L	40	140 L	329 L	224 L
Refueling time [5 kg-H2]	minutes	3.3			
On-board energy efficiency	%	90			
Purity		SAE J2719			
Operating ambient T	°C	-40 to +60			
Operational cycle life	#	1500			
Minimum delivery pressure (abs.)	bar	5			
Etc.					

*5.6 kg usable H₂: 5 kpsi: 4.8 wt.%, 17 g/L;10 kpsi: 4.7 wt.%, 25 g/L

Minimum balance of plant requirements

Using waste heat Use the TIAX 350 bar system BOP

	Mass	Volume
	kg	L
Check valve	0.2	0.1
Manual valve	0.2	0.1
Solenoid valve	0.6	0.4
Relief valve	0.3	0.1
Pressure transducer	0.1	0.0
Temperature transducer	0.1	0.0
Pressure regulator	2.1	0.7
Pressure relief device	0.5	0.3
Piping	5.0	1.0
Boss	0.4	0.1
Vehicle interface bracket	2.0	0.5
Fill system control module	1.0	1.0
Miscellaneous	2.0	0.5
Total	14.5	4.8

Combusting H₂ Add a combustion loop to the 350 bar BOP 8 kW microchannel HX/combustor sized by OSU

	Mass	Volume
	kg	L
Coolant valve	1.0	0.4
Coolant fluid	3.0	0.0
Coolant pump	3.0	2.4
Coolant lines	4.0	2.6
System insulation	1.0	5.0
Oil tank	0.7	2.6
Catalytic heater	2.5	0.8
Blower	0.4	0.2
Headers & fittings	0.5	0.1
Sub-Total	16.0	14.1
	14.5	4.8
Total	30.5	18.9

Research Center

T.Q. Hua, R.K. Ahluwalia, J.K. Peng, et al., "Technical assessment of compressed hydrogen storage tank systems for automotive applications," *Int. J. Hydrogen Energy* **36**, 3037–3049 (2011).

Drive cycles & test conditions for use in the framework

Establish baseline lel economy (adjust or the 5 cycle based n the average from
e cycles) Establish vehicle :tributes Utilize for storage zing
onfirm fast transient sponse capability – ljust if system does ot perform function
Cold start criteria Confirm cold nbient capability – djust if system does ot perform function
onfirm hot ambient Ipability - adjust if Istem does not erform function
Confirm loss of useable H2 target
itizi — projiti — (rejon pape — Cu —

*Based on NREL simulation with compact vehicle, 5.6 kg usable H2, 80 kW fuel cell with a 20 kW battery

Radiator

Anode

Cathode

Coolant Fuel Cell

Pump

Å

Regulator

弘

 H_2

Hydride bed

Complete system using waste heat only

- Satisfies all targets.
- $\Delta H = -27 \text{ kJ/mol-H}_2$, $\Delta S = -105 \text{ J/mol-H}_2/\text{K}$
- 11 wt% pure material capacity
- T (5 bar) = 20.7 C

Research Center

- On-board efficiency: ~100%
- System: 101 kg (5.8 wt%), 124 liters (48 g-H₂/L)
- 66 kg of hydride delivers 5.9 kg-H₂.

Complete system with combustion

占 Anode Satisfies all targets except on-board system efficiency. Regulator Cathode H_2 Coolant $\Delta H = -40 \text{ kJ/mol-H}_2, \Delta S = -114 \text{ J/mol-H}_2/\text{K}$ Radiato Fuel Cell Hydride 17 wt% pure material capacity bed Partial by-pass T (5 bar) = 122.8 C On-board efficiency: ~81% Catalytic Pump heater System: 103 kg (5.2 wt%), 126 liters (43 g-H₂/L) Recycle loop Operating at 130C delivers 5.4 kg-H₂ (delivered + combusted: 6.6 kg-H₂) BOP Pressure BOP Pressure Weight distribution Volume distribution vessel, fittings, vessel, fittings, with combustor 11.5, 12% _ regulators, with combustor 11.5,9% regulators, 14.5, 15% 4.8,4% Expanded BOP HX, 3.1, Natural HX, 2.2, 2% combustor Graphite, 3% Expanded loop, 14.1, 2.2, 2% Natural 11% BOP Graphite, combustor 4.7, 5% loop, 16.0, Void space, _ 17% 27.2, 22% Hvdride, Hydride, 61.3, 50% **SECOE** 46.5, 48% **United Technologies Research Center**

IPPSSM framework development: GUI interface

• Goal: make the framework more user-friendly and expand its capabilities

🕽 single_running_gui	🛃 doe_running_gui
Hydrogen Vehicle Simulation Framework	Hydrogen Vehicle Simulation Framework
Select storage system Crycedsorbent AX-21 low P	Select storage system Cryoadsorbert AX-21 low P Cover pressure AX-21 system. Refueled to 70K at 60 bar. SRNLAPL design with flow-through cooling.
Running scenario Storage system variables - Single run Type of run Adsorbert mass Single Multiple (Design of Experiments) Test case 1 Fuel economy test > Run simulation WW (0.5 - 2)	Running scenario Storage system variables - Design of Experiments Type of run Single Single Multiple (Design of Experiments) Test case 1 Fuel economy test > Run simulation Value (Design of Experiments)
Results 1 H2 used [kg] 1 Tank pressure [bar] Total H2 delivered 58 kg Gravimetric capacity 4.1 weight% 0.5 Total H2 used 58 kg Gravimetric capacity 4.1 weight% 0.5 0.5 Distance traveled 562 mlde 0.5 1 0.5 1 Fuel economy 532 mpgge 0 0.5 1 0.5 1 Storage system mass 115 kg 1 H2 delivered [kg] 1 Tank temperature [C] Storage system volume 120 L 0.5 1.5 1.5 1.5 Generate all plots 0.5 1 0.5 1 0.5 1	Results Total H2 delivered kg Storage system mass Storage system volume kg Gravimetric capacity weights Volumetric capacity gH2L Adsorbert mass kg Image: Storage system volume Gravimetric capacity weights Volumetric capacity gH2L Adsorbert mass kg Image: Storage system volume Gravimetric capacity weights Volumetric capacity gH2L Adsorbert mass kg Image: Storage system volume Gravimetric capacity Image: Storage system volume Gravimetric capacity Adsorbert mass kg Image: Storage system volume Image: Storage system volume Image: Storage system volume Image: Storage system volume Gravimetric capacity Storage traveled Pump power Image: Storage system volume Save results Generate all plots Image: Storage system volume Image: St

Conditions:

ISECOE

lesearch Center

- Single system, single run
- Single system, parameter sweeps
- System-to-system comparisons

Framework GUI structure: designed for change

- GUI designed for change: modules with small responsibilities
 - Currently: Matlab[®]-based
 - Potentially: web-based

Gas/Liquid Separator Parameters

Parameter	Range
GLS Target Volume	≤ 19 liters
GLS Target Weight	≤ 5.4 kg
GLS Operating Temperature	~ 200-250°C
GLS Operating Pressure	~ 35 bar (508 psi)
Gas Type	Nitrogen
Gas Flow Rate	1,067 slpm (0°C, 1atm))
Liquid Type	Silicone Oil AP 100
Flow Rate	~61 ml/s (1.4 L/min)
Density	0.8-1.4 (g/mL) at 20°C
Viscosity	~20-100 (cP) at 25°C
Surface Tension	~ 0.0375 (N/m)

Flammability Test Apparatus (for Gases or Liquids)

Figure 1: KG Apparatus showing the igniter, burst desk, ports for vacuum, gases, and liquids.

The burst desk is designed for 350 psi.

The data acquisition is set for 1000 samples per second for T & P.

The KG apparatus will be used for measuring the flammability of the slurry (solid AB in silicon oil).

Flammability tests follows ASTM E-2079

Figure 2: Two parts of the stainless steel sphere (8.8 liters free volume).

UTRC Contributed to Cryo-adsorption Tank Test Plan

Failure Mechanism	Effects	Validation Test
1) Liner's microcracks initiation and propagation as a result of exposure to LH2	Should this failure mechanism occur, H_2 permeation /	<u>Cryogenic cycling test</u> (for both Type-III and Type-IV liners).
temperature.	leakage through the liner could increase over time.	Use electron microscopy to compare the liner microstructure before and after the cryogenic cycling test.
2) Delamination and/or blistering of the carbon	Loss of structural integrity of the tank.	Cryogenic cycling test.
composite overwrap.		Use electron microscopy to compare the composite microstructure before and after the cryogenic cycling test.
3) Debonding of the carbon fiber / epoxy resin bonding	Loss of structural integrity of the tank.	Cryogenic cycling test.
matrix material.		Use electron microscopy to compare the composite microstructure before and after the cryogenic cycling test.
4) Air leaks into tank due to thermal shock caused by exposure to the cryogenic	Leaked air condenses at ~ 79°K and, hence, oxygen	Tank leak testing / cryogenic pressure burst test.
liquid.	enrichment is a concern.	Pressurize the tank with LN2 (77 °K or below if possible).

UTRC Contributed to Cryo-adsorption Tank Test Plan (Cont.)

Failure Mechanism	Effects	Validation Test
5) Degradation of mechanical properties (fracture toughness and tensile	Loss of structural integrity of the tank.	Mechanical testing of the composite fiber and the liner material.
strength) of the liner and the composite fiber as a results of exposure to LH2.	Increased H2 permeation through the liner material.	Samples have to be mechanically tested while the submerged in LN2.
6) Type IV liner failure due to thermal fatigue stress concentration.	Liner failure and hydrogen leakage.	Cyclical thermal fatigue test. Cycle the test sample between being submerged in LN2 for several hours and being exposed to ambient air for several hours.

Phase 2: UTRC - Pressure Vessel Safety Tests

	Proposed Test	Test Procedure
1.	Cryogenic cycling.	 Subject the tank to cryogenic cycles using liquid nitrogen at temperature in the range: 50°K ≤ T ≤ 77°K and at pressure equal to 1 bar. Using temperatures < 77°K is dependent of the existing lab capabilities. Each cryogenic cycle involves cooling down the tank from room temperature to cryogenic temperature and then warming up to room temperature.
2.	Mechanical testing of tank's carbon fiber composite and liner material (Types III and IV).	 Immerse test samples (carbon composite overwrap or the liner) in LN2 at 50 or 77°K for extended period of time. Test the samples for fracture toughness and tensile strength while the sample is submerged in the LN2.
3.	Cryogenic pressure cycling using LN2 (@ T ≤ 77ºK).	Subject the tank to pressure cycles between 20 bar (10% of NWP) and 200 bar (100% of NWP) . OR, cycle between 10% NWP and 125% NWP (250 bar). (FMVSS 304)
4.	Thermal cycling. (Ambient temperature outside tank).	Subject the tank to temperature cycles between 20°K and 77°K and at 1 bar pressure.
5.	Sequential pressure and temperature cycling. (Ambient temperature outside tank).	Subject the pressure cycles between 20 bar and 250 bar followed by one temperature cycle between 20°K and 77°K at 1 bar. Repeat this sequence for a TBD number of cycles.
6.	Burst pressure test. (Ambient temperature outside tank).	Subject the new tank (as well as a pressure cycled tank) to a burst test using liquid nitrogen at 77°K.
7.	Hydrogen permeation test (Type-IV liner).	Test either the entire tank or a specimen of the liner for H2 permeation. Use LH2 at 20°K and 125% NWP.

