

Chemical Hydride Rate Modeling, Validation, and System Demonstration

LANL Team

T.A. Semelsberger, Ben Davis, Biswajit Paik, Jose Tafoya, Gerie Purdy, and Tessui Nakagawa

DOE Fuel Cell Technologies Program Annual Merit Review, EERE: Hydrogen, Fuel Cells and Infrastructure Technologies Program Washington, DC May 14-18, 2012 Technology Development Manager : Ned Stetson

This presentation does not contain any proprietary, confidential, or otherwise restricted information

UNCLASSIFIED

Project ID: ST007

LANL Project Overview and Relevance

<u>Timeline</u>

- Project Start Date: Feb FY09
- Project End Date: FY14
- Percent Complete: 55%

<u>Budget</u>

- •Total Project Funding: \$4.7M •DOE Share: \$4.7M
- Funding:
 - •2011: \$480K
 - •2012: \$900K

Project Timeline

Barriers

- Barriers Addressed
 - Efficiency
 - Gravimetric Capacity
 - Volumetric Capacity
 - Durability/Operability
 - *H*₂ Discharging Rates
 Start time to full flow
 Transient Response
 - H₂ Purity
 - Environmental, Health & Safety

Phase 1					Phase 2					Phase 3										
2009			2010			2011 2011		11	2012			2013			2014					
Q2	Q3	Q4	Q1	Q2	Q3	Q 4	Q1	Q2	Q 3	Q 4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2

System Architect Accomplishments/Highlights

Technology Team Lead for:

- System Design Concepts and Integration: *delivered preliminary design concepts*
 - Fluid-phase chemical hydrogen storage
 - AB compositions
 - Alane compositions

Chemical Hydrogen Storage System Architect & Fluid-Phase System Designer

Monitored progress on chemical hydrides technology across the technology areas for needed features to be advanced and to insure needed communication across groups and areas occurs

- Assessed endothermic and exothermic systems
- ✓ Performed FMEA analyses on fluid-phase chemical hydrogen systems
- Performed Chemical Hydrogen downselections, discontinuations, and GO/NO-GO decisions (details in Reviewer Only Slides)
- ✓ Refocused Chemical Hydrogen research efforts (details in Reviewer Only Slides)
 - Component targeted research
 - SMART milestones
 - Deliverables

Accomplishments

Fluid-Phase Chemical Hydrogen Media

Compositions

 $(AB)_{solubility} = \frac{(mass)_{AB}}{(mass)_{solvent}} = fcn \left[\{T\}, \{Ionic \\ Liquid \}_{i=0,l,2}, \{Mass \\ IL \}_{i=0,l,2}, \{IL \\ Purity \}_{i=0,l,2}, \{AB \\ Purity \}, \{H_2Prod \\ Additive \}_{j=0,l,2}, \{Mass \\ Additive \}_{j=0,l,2}, (Mass \\ Additive \}$

Thermo-Physical Properties

- Phase change
- Solubility
- Freezing/Boiling points
- Solvent Compatibility
- Viscosity
- Solvent Stability
- Dissolution Kinetics
 - Particle Size
 - sublimation,
 - recrystallization
 - Temperature
 - Mixing

- Health & Safety Conscious
 - Human
 - Environmental
- Cost Conscious
- Dehydrogenation Kinetics
 - Space-time yield
 - Selectivity
 - Conversion
 - Stability

Reaction Characteristics

Relevance:

To quantify reaction characteristics that will aid in the development of low mass and low volume system components (i.e., gas-liquid separators, reactors, hydrogen purification components, ballast tanks, fuel tanks, etc.,)

Solvent Stability is critical

- Maintain fluid phase
- Eliminate reactor fouling
- Reduces gas-phase impurities

Solvent Requirements

- High boiling point
- Chemically inert
- High solubilities for AB
- Thermally stable
- Low freezing point

AB solvating candidates have been identified (Ben Davis, LANL)

Fluid-phase AB compositions

- Temperature operability range
- Impurities
- Hydrogen yields
- Phase changes

Reaction characteristics AB compositions determine the reactor design and operation

Overlapping kinetics result in poor reaction selectivity control

EST 1943

(FI) HSECOE

EST. 1943

Accomplishments: Chemical Compatibilities

1: AB/Iolilyte (2 months)
 2: AB/TbmpMS (2 months)
 3: AB/DmimDmp (2 months)
 4: AB/EmimAc (2 months)
 5: AB/EmimDep (2 months)
 6: AB/BmimCl (2 months)
 7: PNNL AB Slurry (2wks)

No physical degradation of bladder material when exposed to various AB compositions

1. Need to quantify chemical and physical changes to bladder material

Accomplishments: AB & Alane Fluid-Phase Viscosities

Subscale Reactor Design

1. To assess reactor performance as a function of design

- Space-Time Yield
- Reactor Durability
- Reactor Operability
- Impurities
- Downstream Effects (i.e., GLS, Purification, etc.)
- 2. To down-select the most viable reactor design

Relevance: Develop and demonstrate novel reactors

- ✓ High hydrogen space-time yields
- ✓ High heat transfer rates
- ✓ Promote gas-liquid separation
- ✓ Mitigate reactor fouling

Accomplishments: Reactor Design

Accomplishments: Reactor Design

Brick colored bars indicate failure mechanisms resulting from fouling

UNCLASSIFIED

Accomplishments: Reactor Design

Liquid Composition:

5 wt.% AB/tetraglyme

Reaction Conditions:

- T_{stpt} = 190 °C
- Space-time ≈ 0.5 min

Reactor Type:

Vertical flow reactor

Reaction Type:

Uncatalyzed thermal decomposition

Jas Axial Temperature Profiles within Heated Reactor Length @r = 0 for Space time = 0.6 min 200 180 160 Temperature (C) 0 100 0 00 0 00 100 80 60 40 20 ٥ Separato 10 Axial Distance (in) Tetraglyme Value **Parameter** Fouling was not observed in the gas-liquid Boiling Point (°C @ 760 mm Hg) 275 separator at temperatures \leq 200 °C for a 5 Freezing Point (°C) -29.7wt.% AB-tetraglyme composition < 0.01 Vapor Pressure (mm Hg @ 20°C)

Viscosity (cP @ 20°C)

Note: Tetraglyme was discontinued as a solvent agent due to low AB solubility

4.1

As-received material of

construction

Hydrogen Purification

- Borazine Scrubber Targets:
 - Adsorbent mass = 4 kg
 - Adsorbent volume = 3.6 L

Relevance: To develop and demonstrate hydrogen purification technologies that produce fuel-cell grade hydrogen meeting DOE purity targets

Accomplishments: Borazine Adsorption

Adsorbents have been identified that effectively adsorb borazine

Accomplishments: Borazine Adsorption

- Zeolite Shortcomings:
 - Low coverage's due to acid site density
 - Low surface area
- Need to explore higher surface area chemically active adsorbents
 - Activated Carbon
 - MOFs (BASF)

Physical Adsorbents can meet borazine scrubber <u>ECoE mass targets</u> if

1. Chemically modify adsorbent

2. Reduce borazine via reaction selectivity

Increase adsorbate coverages
 to greater than one

Adsorbent Mass (kg) required for an 1800 mile replacement interval

Discontinued Research

UNCLASSIFIED

Accomplishments: LANL Discontinued Research

- Various liquid-phase hydrogen bearing additives (e.g., sec-butyl AB)
- Various AB solvating agents (e.g., EmimAc, EmimDep, etc.)
- Various physical adsorbents for high impurity concentrations
- Fuel gauge sensor research scope
- Fuel cell tolerance testing research scope

1200

1000

800

600 400

600

500

0.80g 1.08g

193kHz peak
 193 kHz @ 1.04
 193 kHz Repeat

1.2

1.4

LANL Accomplishments Summary

- *1. In situ* quantification of all gas phase products generated from fluid-phase AB compositions
- 2. Identified reactor operating conditions that
 - maximize hydrogen selectivities,
 - minimize impurities production, and
 - eliminate solvent decomposition
- 3. Demonstrated that borazine can be scrubbed with regenerable adsorbents
- 4. Demonstrated that reactor fouling can be mitigated by reactor operating temperature
- 5. No apparent incompatibilities observed with bladder materials and fluid-phase AB compositions
- 6. Designed and built novel fluid flow reactors
- 7. Demonstrated fuel gauge sensor for metal hydrides and chemical hydrogen storage media
- 8. Refocused Research Efforts of the Chemical Hydrogen Research Group
- 9. Performed Downselections, Discontinuations, and GO/NO-GO Decisions
- 10. Developed a comprehensive component testing plan for the Chemical Hydrogen
 - Research Group

LANL Future Work

Task	Material Tested	Test Apparatus	Task Outputs	System Engineering Inputs (as necessary)		
	Slurry Alane (6.0 wt. % H2)			 System design strategies for 		
Reactor	20 wt. % AB slurry	Flow through reactor	 Degree of reactor fouling Reactor officionsy 	 mitigating reactor fouling Impurity levels for H2 purification sizing 		
Impurities	40 wt. % AB slurry		Reaction selectivity	Reactor design improvements		
	Fluid phase AB (6.0 wt. % H2)			• Preliminary observations of GLS fouling		
Borazine Purification	Chemically modified adsorbents	EGA	 Required mass and volumes of adsorbent materials 	 Updated system mass and volume projections 		
Novel Reactor Design and Testing	Fluid-phase AB compositions	Novel reactors with gas analysis	 Degree of reactor fouling H2 space-time yield Reaction selectivity 	 Reactor performance Impurity levels for H2 purification sizing Reaction characteristics Preliminary observations of GLS fouling 		
Materials Engineering / quantification	Fluid-phase chemical H2 storage media	TGA, EGA, DSC, etc.,	 viscosity impurities freezing points 	 System design modifications System design/operation limitations Reaction characteristics 		
25						

UNCLASSIFIED

LANL Milestones

Component	Phase 2 S*M*A*R*T Milestones
Materials Engineering	Report on ability to develop a 40wt. % liquid AB material having viscosity less than 1500cP pre- and post-dehydrogenation and kinetics comparable to the neat.
Reactor	Report on ability to develop a flow through reactor capable of discharging 0.8 g/s H2 from a 40 wt.% AB fluid-phase composition having a mass of no more than 2 kg and a volume of no more than 1 liter.
Borazine Scrubber	Report on ability to develop a borazine scrubber with a minimum replacement interval of 1800 miles of driving resulting in a minimum outlet borazine concentration of 0.1 ppm having a maximum mass of 3.95 kg and maximum volume of 3.6 liters.

Collaborations

External Collaborators	Effort	Contact
H ₂ Codes and Standards	General Guidance	C. Padro (LANL)
		J. Wegrzyn (BNL)
Chemical Hydrogen Storage Researchers	Materials Updates	T. Baker (U. Ottawa)
		B. Davis (LANL)
H. Droduction & Dolivory Toch Toom		M. Pastor (DOE)
H ₂ Production & Delivery lech learn	with Analyses	B. James
	General Guidance	T. Rockward (LANL)
LANL FUELCEILIEAM	Fuel Cell Impurities	R. Borup (LANL)
H ₂ Safety Panel	General Guidance/Concerns	S. Weiner
SSAWG	Technical Collaboration	G. Ordaz (DOE)
H ₂ Storage Tech Team	General Guidance	Ned Stetson (DOE)
Argonne National Laboratory	Independent Analyses	R. Ahluwalia

ECoE Collaborators	Effort	Contact
	Ammonia Scrubbing	B. van Hassel
UTRC	Simulink [®] Modeling	J. Miguel Pasini
	MOR	E. Ronnebro
PNNL	System Modeling	K. Brooks/M. Devarakonda
	ВОР	K. Simmons
NREL	Vehicle Modeling	M. Thornton
EST.1943	UNCLASSIFIED	HSECO

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Fuel Cell Technologies Program: Hydrogen Storage Technology Development Managers:

Ned Stetson and Jessie Adams

Backup Slides

UNCLASSIFIED

Oregon State

3 0