

System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage

Matthew Thornton NREL May 15th, 2012

Project ID # ST008

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

HSECoE start date: FY09 HSECoE end date: FY14 Percent complete: 55%

Budget

Total funding \$1.8M

DOE Share 100%

Funding Received in FY11: \$320K

Funding for FY12: \$110K

Barriers

- System cost
- Charge/discharge rate
- System mass
- Systems volume
- Transient response
- Well-to-power plant efficiency
- Vehicle performance

Partners

SRNL, PNNL, UTRC, UQTR, JPL, Ford, GM, LANL, OSU, BASF, UM the DOE Vehicle Technologies Program.

Relevance/Objectives

System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage

- Manage HSECoE vehicle performance, cost and energy analysis technology area
- Vehicle Performance: Develop and apply model for evaluating hydrogen storage requirements, operation and performance tradeoffs at the vehicle system level.
- Energy Analysis: Coordinate hydrogen storage system WTW energy analysis to evaluate off-board energy impacts with a focus on storage system parameters, vehicle performance, and refueling interface sensitivities.
- Media engineering properties: Assist center in the identification and characterization of adsorbent materials that have the potential for meeting DOE technical targets for an onboard systems.

Objective: Vehicle Performance

- Develop and apply a model for evaluating hydrogen storage requirements, performance and cost trade-offs at the vehicle system level; e.g. Range, fuel economy, cost, efficiency, mass, volume, acceleration, on-board efficiency
- Provide high level evaluation (on a common basis) of the performance of materials based systems:
 - Relative to technical targets
 - Relative in class and across class for materials systems
 - Relative to physical storage systems
 - Relative to conventional vehicles

Objectives: Energy Analysis

- Perform hydrogen storage system energy analysis to evaluate WTPP efficiency, Energy requirements, H₂ cost and GHG emissions
 - Develop vehicle a level models and obtain FE figures for energy analysis.
 - Obtain data from center partners on storage system designs (mass, volume, operating T and P)/fuel interface/dispensing/station energy requirements.
 - Work with other teams (e.g. H₂ Delivery and systems analysis) and use existing data for H₂ production and distribution and tank production and CO₂e emission factors (GREET, H₂ A, etc.) and calculate WTPP efficiencies etc.
 - Adjust model inputs based on changes in storage system design and data to obtain final results.
 - FY12 focus is accounting for and understanding the impact of the thermal management (i.e. flow through cooling design for adsorbents) and off-board regeneration cycles for chemical hydride systems

Date	Milestone or Go/No-Go Decision	Status			
9/12	Work with center and SSAWG partners to complete at least one well-to-wheel efficiency analysis for a sorbent-based storage design concept and compare it's energy efficiency versus the DOE 2017 minimum efficiency targets of 70% off-board and 90% on-board.	25%			
2/12	Recommend materials for scaled H2 storage system engineering.	100%			
9/12	Provide HSECoE appropriate engineering properties.	25%			

Approach: Develop HSSIM (Vehicle Model)

HSSIM Structure

Model Inputs

- Vehicle characteristics
- Fuel cell characteristics
- H₂ storage system

•Vehicle Model

- Power requirement calculation
- Vehicle level test matrix

Results

- Fuel economy (mpgge)
- Range (miles)
- Vehicle mass (kg)
- Onboard efficiency (%)
- Hydrogen flow (moles/s)
- Vehicle performance (e.g. 0-60 mph time)

A tool to be used across the engineering center to evaluate candidate storage system designs on a common vehicle platform with consistent assumptions

Vehicle Model

0 00

0

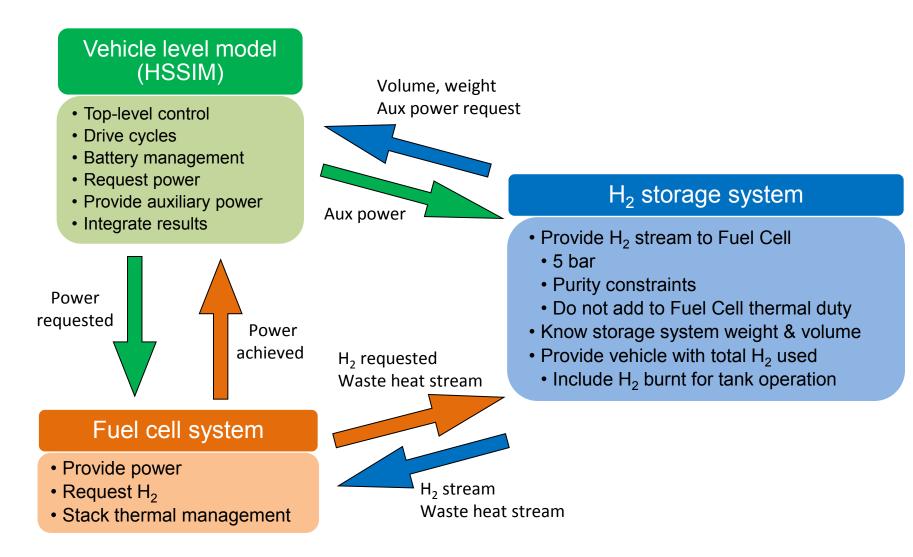
Model Inputs

Results

Approach: Vehicle Assumptions

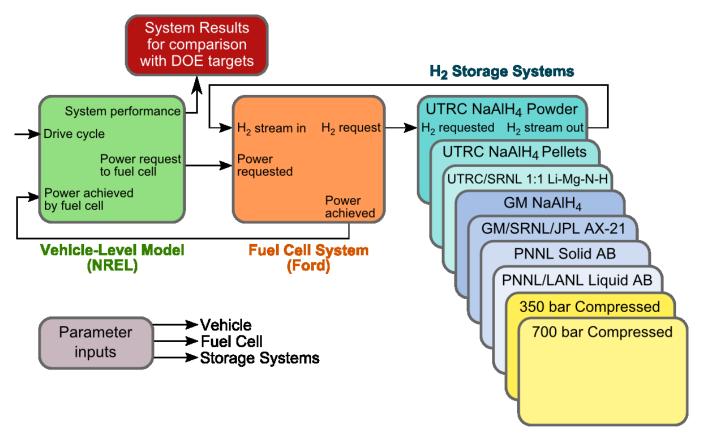
• Midsize Car Class (Family Sedan):

Vehicle Attribute	Units	Value
Glider mass ¹	kg	1,104
Frontal area	m²	2.2
Drag coefficient	—	0.29
Rolling Resistance	_	0.008
Tires	_	P195/65R15
Electric Motor	kW	100 (~85% eff.)
Energy Storage	kW/kWh	20/1 (40-80% SOC)



¹ Excludes fuel cell, hydrogen storage system, electric motor, power electronics, and energy storage system

NATIONAL RENEWABLE ENERGY LABORATORY


Approach: Modeling Framework

Slide provided courtesy of José Miguel Pasini UTRC

Approach: Modeling Framework

Compare materials-based hydrogen storage systems on a common basis with defined interfaces and consistent assumptions

Slide provided courtesy of José Miguel Pasini UTRC

Approach: Energy and WTPP Analysis

Utilize H₂A Hydrogen Delivery Scenario Model (HDSAM)

- Standardized Excel spreadsheet tool with the same H₂A approach to cost, energy efficiency and GHG emissions analysis but more complex
- Pre-loaded with current capital costs and utility costs of H₂ delivery components – pipelines, tube trailers, LH₂ trucks, terminals, refueling stations, etc.
- User specifies a delivery scenario:
 - Urban or city and which city
 - Market penetration (%)
 - Transport mode (to terminal) and distance
 - Distribution mode (terminal to refueling stations)
- Model calculates: delivery cost (\$/kg-H₂), energy efficiency (WTW (power plant)), and GHGs (gms/mile)

Approach: Energy Analysis Assumptions for HDSAM

SMR
Sacramento, 15% market penetration
62 miles (100 km) from city gate
U.S. grid
Geologic, LH ₂ , liquid
Plant to city gate terminal
• GH2 – pipeline
 LH2, liquid carrier – truck
City gate terminal to refueling stations – truck
1000 kg/day maximum (may be limited by one delivery per day or 9% coverage)

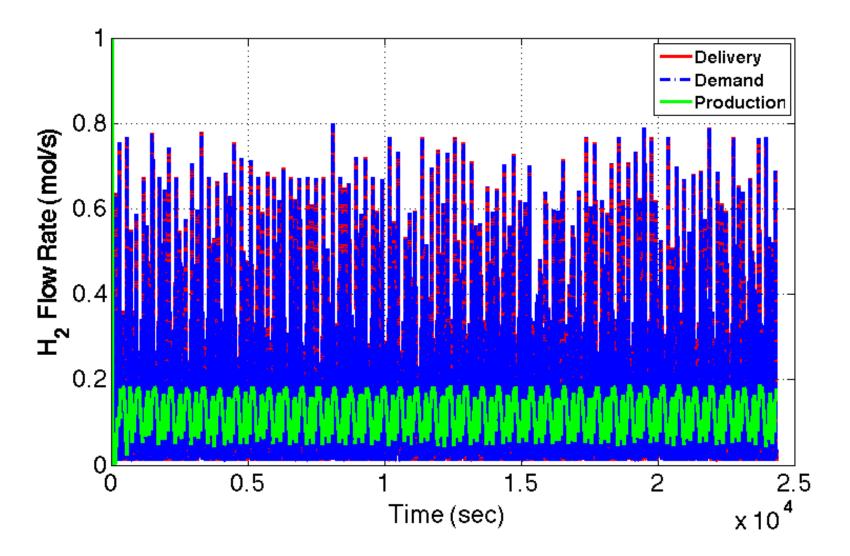
Approach: Energy Analysis

Storage System	H ₂ Delivery Cost (\$/kg)	WTPP Efficiency (%)	WTW GHG (gms/mi)	Energy (Delivery) (kWh/kg-H ₂)
60 Bar Adsorbent 40-120K (Flow through cooling) Al				
200 Bar Adsorbent 80-160K (Flow through cooling) CF				
60 Bar Adsorbent 80-160K (MATI HX) Al				
200 Bar Adsorbent 40-120K (MATI HX) CF				
CH exothermic (fluid AB)				
CH endothermic (Alane)				
350 Bar Pipeline	4.26	56.7	197	58.8
700 Bar Pipeline	4.71	54.4	208	61.2
Cold Gas 500 Bar	4.80	42.7	279	78.0

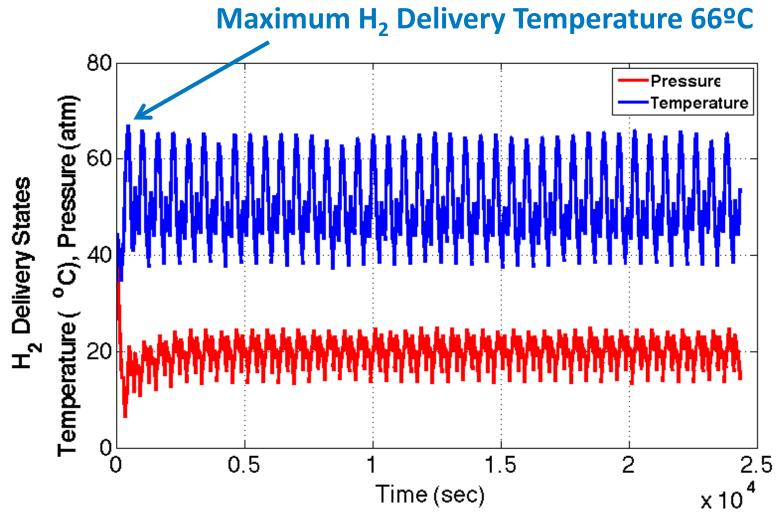
Approach: Media Engineering

Work with engineering center partners to identify potential materials and configurations that can be optimized with the appropriate thermal conductivity, sorption, and mechanical properties needed for integration in a hydrogen storage system

- Optimize AC pellet synthesis and capacities
 - Compare results between MSC-30, Missouri 3K, and Pyrolyzed Polyether ether ketone (PEEK) powders and pellets
 - Investigate the use of carbon fibers to improve pellet structure and possibly thermal conductivity

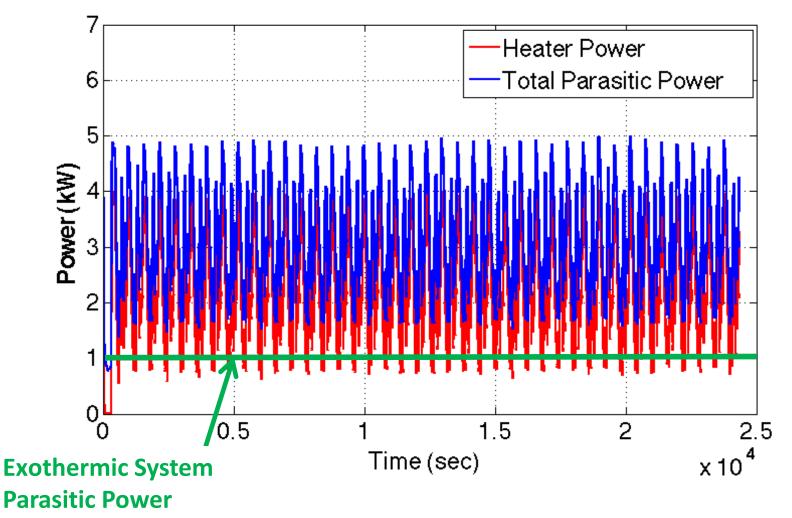

Accomplishments: Vehicle Performance Summary

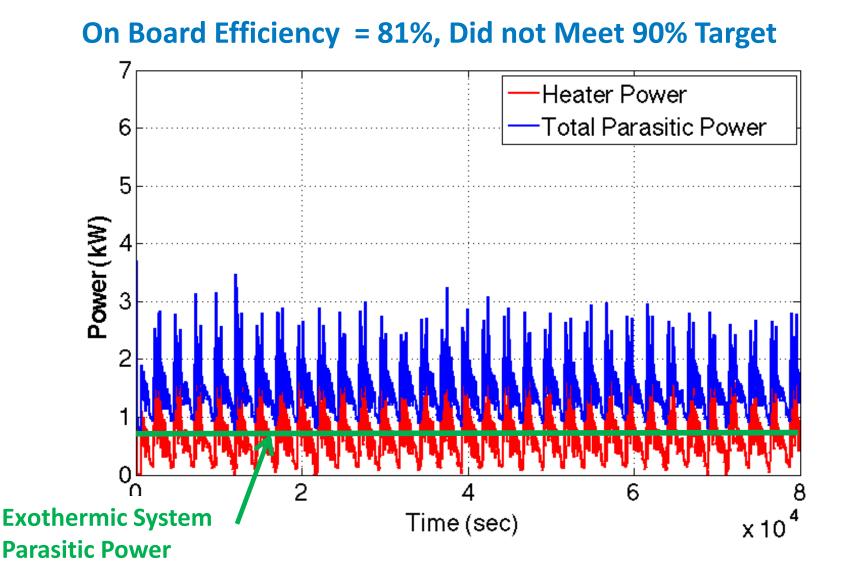
Example simulated vehicle performance results for various hydrogen storage systems with fixed on-board H2 (from framework)


Hydrogen Storage System	Adjusted Fuel Economy (mpgge)	Range (mi) 5.6kg H2	On-Board Efficiency (%) UDDS/HFET	Gravimetric Density (wt. %)	Volumetric Density (g/l)	
AX21 press FCHX	48.7	273	97	4.3	25.2	
MOF5 Cmpct- FCHX	48.3	271	97	3.5	24.1	
MOF5 Press FCHX	49.3	276	98	4.6	25.3	
Fluid AB	45.3	254	96	4.6	38.9	
Alane	42.6	239	88	88 4.6		
NaAlH4	36.4	204	77	77 1.2		
TiCrMn	45.9	257	100	1.1	26.53	
350 bar Compressed Gas	49.9	280	100	4.8	17.03	
700 bar Compressed Gas	49.9	279	100	4.7	25.01	

Accomplishments: H₂ Flow Rate for Alane System (CH endothermic) Over US06 Cycle Analysis

Met US06 H₂ Delivery Requirements


Accomplishments: H₂ Delivery States for Alane System Over US06 Cycle Analysis


Met H2 Delivery Temperature and Pressure Requirements

Accomplishments: On-board Efficiency Over US06 Analysis for Alane System

Accomplishments: On-board Efficiency Over Cold FTP Analysis for Alane System

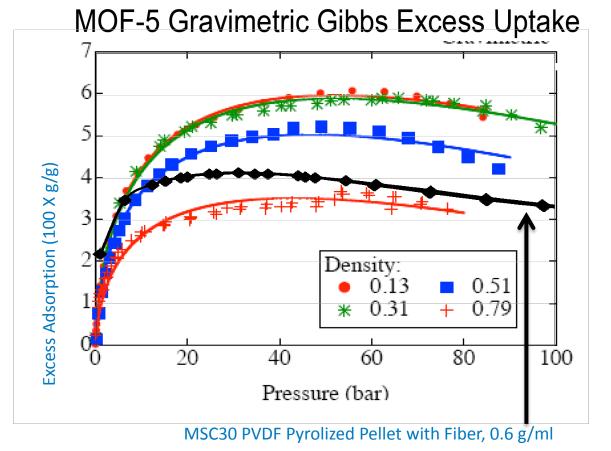
Results: Fixed Volumetric Effects on Range Analysis

Example simulated volume effects on vehicle range

and on board usable H2 (from framework) for various adsorbent system designs

For three fixed volumes scenarios 140/205/253 liters

Hydrogen Storage System	Adjusted Fuel Economy (mpgge)	Usable H2 (kg)	Range (mi) Usable H2	Gravimetric Capacity Weight Percent	Volumetric Capacity (g/l)	Volume (L)	
Powder MOF-5 60bar 80k Al	51.11	2.00	102.20	2.80	12.86	140 ¹	
Powder MOF-5 60bar 40k CF	51.30	4.20	215.50	6.61	29.84	140	
0.52g/cc MOF-5 200bar 80k Al	50.47	3.35	169.10	2.68 23.94		140	
0.52g/cc MOF-5 200bar 40k CF	50.62	4.60	232.90	4.18	32.59	140	
Powder MOF-5 60bar 80k Al	50.95	2.80	142.70	3.15	13.67	205	
Powder MOF-5 60bar 40k CF	50.97	6.70	341.50	7.97	32.64	205	
0.52g/cc MOF-5 200bar 80k Al	49.93	5.35	267.10	2.92	26.11	205	
0.52g/cc MOF-5 200bar 40k CF	50.18	7.30	366.30	4.61	35.51	205	
Powder MOF-5 60bar 80k Al	50.73	3.60	182.60	3.39	14.18	253	
Powder MOF-5 60bar 40k CF	50.89	8.60	437.60	8.68	33.96	253	
0.52g/cc MOF-5 200bar 80k Al	49.32	6.85	337.90	3.02	27.05	253	
0.52g/cc MOF-5 200bar 40k CF	49.71	9.30	462.30	4.77	39.56	253	


¹ Actual volume used = 155.56L which represents the lowest value in the data set available.

NATIONAL RENEWABLE ENERGY LABORATORY

Accomplishments: Activated Carbon Pellet Development

Optimize AC pellet synthesis and capacities

- Carbon fibers improve pellet structure and possibly thermal conductivity
- Pellets made with MSC-30, Pyrolyzed PVDF, and carbon fibers behave similarly to MOF-5 pressed materials as a function of bulk density

Accomplishments: AC and MOF-5 Pellets Similar Performance

Optimize AC pellet synthesis and capacities

- Approximately, standard correlation between BET and H₂ capacity for pellets
 - i.e. ~1 wt% max. Gibbs Excess per 500 m²/g)
- MSC-30, Missouri 3K, and Missouri pellet results agree
 - Similar to MOF-5 pellet volumetric and gravimetric capacities on a per bulk density basis
 - A little improvement could be made with more optimized pores
 - e.g. using pyrolyzed polyether ether ketone (PEEK) material

Summary Table of Activated Carbon Pellet Results

Summary Table of Activated Carbon Fenet Results											
Sample	AC (%)	PVDF (%)	Fibers (%)	Pressing Pressure (psi)	Pressing Temp. (C)	PressedDensity (g/ml)	Pyrolized Density (g/ml)	SSA (g/m2)	77 K Max. Gibbs Exc. (wt%)	77 K Max. Gibbs Exc. (g/L)	Thermal Conductivity ³ (W/m-K)
PEEK ²	100	NA	NA	100K	20	0.9		2600			
MSC010412	68	22	10	100K	90	0.7	0.6	2263	4	25	
MOF-5 ⁴	100					0.5		2000	4.7	25	0.095
3K	73	17	10	100K	90	0.7		2040			
Pfeifer ¹ 3K	~70	PVDC	NA	20K	50-		~0.7	~2200			
					150						

1. Results reported by University of Missouri group

- 2. Pressed powder results, did not form pellet
- 3. Thermal Conductivities of ENG 100-200; Carbon fiber 100-2000; SWNT 2000-6000 W/m-K
- 4. Ford Data

5. With ~10% ENG the MOF-5 Pellet Thermal conductivity is ~0.7 W/m-K

Collaboration and Coordination

Key Collaborators:

UTRC-Model integration and model Framework Ford-FC model, model integration and MOF-5 data **SRNL-Adsorbent models PNL-Chemical Hydride models GM-Metal Hydride models** United Technologies LANL-Chemical Hydride data UM-Adsorbent data ANL-System/energy analysis

lesearch Center

- BASE

Proposed Future Work

Continue to run vehicle simulations to:

- Refine storage systems sizing
- Evaluate progress toward tech targets
- Evaluate the impact of changes to existing storage system designs—refine system designs
- Determine system demand/flow rate for phase III systems (based on US06 cycle)

Energy Analysis

- Model and calculate WTPP efficiencies, hydrogen cost, energy requirements and GHG emissions for adsorbent and CH Phase II systems
- Media engineering properties
 - Provide hydrogen storage engineering properties for selected sorbent materials/pellets as a function of temperature from ~30 K to 300K

Summary

- Manage HSECoE vehicle performance, cost and energy analysis technology area
- Vehicle Performance: Develop and apply model for evaluating hydrogen storage requirements, operation and performance tradeoffs at the vehicle system level.
- Energy Analysis: Coordinate hydrogen storage system WTW energy analysis to evaluate off-board energy impacts with a focus on storage system parameters, vehicle performance, and refueling interface sensitivities.
- Media engineering properties: Assist center in the identification and characterization of sorbent materials that have the potential for meeting DOE technical targets for an onboard systems.

Technical Back-Up Slides

FE Validation,

