A Joint Theory and Experimental Project in the Synthesis and Testing of Porous COFs for On-Board Vehicular Hydrogen Storage

Omar M. Yaghi

Department of Chemistry UC Berkeley William A. Goddard III

Materials and Process Simulation Center Caltech

> Project ID ST022

May 16, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: 9/1/2008 (funded from 4/1/2009) Project end date: 1/31/2013 Percent complete: 65%

Budget

- Total project funding
 - DOE share: \$1.38 M
 - Contractor Share: \$405,499
- ☐ Funding received in FY11: \$284,425
- Funding for FY12: \$225 K

Barriers

Barriers addressed

- Improved gravimetric and volumetric density of hydrogen uptake
- Improved hydrogen binding energy
- Synthetic scale up of COFs to cubic meters

Collaborating Partner

- Co-PI: William Goddard (Caltech)
- Fraser Stoddart (NW)
- Jaheon Kim (Soongsil University)

BASF

Relevance

12.0

Uptake / wt%

Overall project objectives:

Develop new materials to meet DOE system H₂ storage targets

- Theoretical prediction of H₂ storage capacities to guide chemistry
- Synthesize lightweight crystalline porous solids for the metalation
- Measure H₂ uptake and adsorption enthalpy

Lightweight crystalline porous solids:

Covalent Organic Frameworks (COFs)

- Control of structure, topology, and interpenetration
- Lightweight materials
- Design of functionalities
- Suitable for metal impregnation

Theory and experiment agree Thus can use Theory to identify the most promising metallated cases required to meet DOE requirements

Excess and total H₂ uptakes in COF-102 and 103 are almost the same as that in MOF-177. However, binding energy is not high enough to meet the DOE targets. JACS, 2009 (exp).

COF-102

Validation of theory by compare to Experiment: COFs

A. Goddard III, J. Am. Chem. Soc. 130, 35, 11580 (2008).

Validation of theory by compare to Experiment: MOFs

[Experiment] Wong-Foy, A. G.; Matzger, A. J.;
Yaghi, O. M. *J. Am. Chem. Soc. 128*, 3494 (2006).
[Theory] S. S. Han, William A. Goddard III, *J. Phys. Chem. C 112*, 13431 (2008).

2.7 wt% total hydrogen uptake in MOF-210

[Experiment] J. L. C. Rowsell, O. M. Yaghi, *J. Am. Chem. Soc. 128*, 1304 (2006).
[Theory] S. S. Han, William A. Goddard III, *J. Am. Chem. Soc. 129*, 8422 (2007).

Previous predictions of high performance systems

[Experiment] Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 128, 3494 (2006). [Theory] S. S. Han, William A. Goddard III, J. Phys. Chem. C 112, 13431 (2008).

100

IRMOF-2-96

IRMOF-2-96

C5.05Li

IRMOF-2-54

C54Li

Development of 1st principles Force Field for Designing of

<u>COFs with metal binding sites</u>

Strategy for achieving room temperature H₂ storage

How to increase binding energy (beyond the first 1-5 bar) and volumetric capacities to meet storage targets at room temperature?

- Heterogeneity always reduce delivery amount of H₂.
- Assuming that 40 g H₂/L is stored through one-to-one binding in MOF-5, 207 H₂ binding sites are necessary per unit cell (= correspond to 6.3 wt% H₂ uptake).
- But there are only 328 C, O, and Zn (non-hydrogen) atoms per MOF-5 unit cell.
- If each phenyl group in MOF-5 hold two metal Li and if each Li bind 4.3 H₂ molecules, we can achieve 40 g/L (= 6.0 wt%) uptake.

Need Materials with multiple H₂ adsorption sites (but not too strong) achieve 300K binding

Approach: Create multiple hydrogen binding sites by metalation of COFs

 H_2 is a weak Lewis base that can bind to transition metal (TM) because of the *back bonding* of electron from a filled metal *d* orbital to the antibonding orbital of H_2 .

By metalating organic linkers multiple binding sites can be created.

- Estimate binding energy of H₂
- Effect of the oxidation state of TM
- Effect of the leaving groups (L)

Accomplishments: found cases in which Binding energy is nearly the same after adsorption of 4 H₂ molecules

Accomplishments (this year):

- The binding energy for third and fourth H₂ near the metal site was estimated.
- Similar binding energy (ΔH_{ads}) is observed for the first row transition metals and Pd.
- We found ΔH_{ads} is nearly the same even after 4 H₂ molecules are adsorbed.
- 30 to 40 H₂ can bind to the linker + MCl₂ moiety, if there is enough space.
 Approach:
- Need to design new COF materials, which can provide enough space to confine H₂ without losing metal density per volume.

Our first attempts on COF-301 (last year)

Metalated materials maintain reduced porosity

 Experimental H₂ uptake was much smaller than predicted one, because of unreacted metal salts in pores

New approach: functionalization of COF-300

- Higher initial Q_{st} is expected compared to COF-330.
- Metalation increases by ~300% in the volumetric capacity and by ~50% in the gravimetric capacity because of higher density of metals in the structure.

New approach: functionalization of COF-300

16 *Multiple sites. Metalated NH₂ 14 *The metalated sites Qst, 298K -Pure Ost / kJ mol -1 8 8 9 8 Theory are not very accessible --Bulk H2 and the Qst improves slightly. *Higher Qst for the Homogeneous strong binding sites. 4 metalated framework. 2 0 3.1 wt% total 0 20 40 60 80 100 **Pressure / bar** (2.2 excess)RT Experimental H₂ uptake in 20 Theory synthesis 18 Total Vol. Uptake, 298K COF-330-PdCl₂ started 16 Metalated 14 this year. ---Pure 90 12 -Bulk H2 Uptake 10 Theory 8 6 **COF-330** 100 20 40 60 80 0 Pressure / bar

Metalation of phenanthroline moieties increases by 200% in the volumetric capacity and by 50% in the gravimetric capacity to the pristine material.

Theory

Preliminary excess H₂ uptake by COF-320 at 77 K

BET area of COF-320 is larger than COF-300 and 301, but H₂ uptake is smaller than these materials. Activation procedures must be optimized.

Literature: Large open pores are key to successful metalation

Compound	Metal binding site	Pore size	Metals impregnated	Porosity	Ref
COF-301	HO	6 Å	PdCl ₂ PtCl ₂	Significant SA drop	AMR 2011
UMCM-1 derivative		20 Å	PdCl ₂	ca. 60%	JACS 2008
MOF-253		8 Å	Cu(BF ₄) ₂ PdCl ₂	Significant SA drop	JACS 2011
MOF-267		7 Å	Only low metalation yield	_	Unpublished
New MOF		12 Å	Cu(BF ₄) ₂ PdCl ₂	ca. 50%	Unpublished

Larger pore diameter should be important for successful metalation reactions when binding constants are large enough to allow the metalation.

New approach: Successful isoreticular pore expansion and functionalization of COF-300

* Synthesis of these COF materials started this year.

Accomplishments: Gram scale synthesis of organic links (1)

*Large scale synthesis was achieved this year.

Accomplishments: Gram scale synthesis of organic links (2)

Structure (≡	Link for COF- <i>n</i>	Synthetic steps	Scale available
H O H	COF-300	Commercially available	> 10 gram scale
HO O O O H	COF-301	1 steps	gram scale
	COF-320	Commercially available	> 10 gram scale
$\overset{H}{\searrow} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\longleftarrow} \overset{O}{\longrightarrow} \overset{O}{\to} \overset{O}{\to$	COF-322	1 step (based on a literature)	n/a
	COF-330	Developing synthetic conditions	n/a
$N \rightarrow N \rightarrow$	COF-333	2 steps	gram scale*
	COF-340	3 steps	gram scale*

*Large scale synthesis was achieved this year.

Successful synthesis of MOFs with expanded links

COF-301

COF-320

COF-333

COF-340

COF- <i>n</i>	Pore size (Å)	Metal binding site	Status	References
COF-300	8	n/a	Expt	JACS 2009
COF-301	6	Iminophenol	Expt and Calc	AMR 2011
COF-320	12	n/a	Expt	AMR 2012
COF-322	12	Bipyridine	Not started	
COF-330	12	Phenanthroline	Calc	AMR 2011
COF-333	12	Iminopyridine	Expt and Calc	AMR 2011
COF-340	19	Phenanthroline	Expt	AMR 2011

Metal binding sites are introduced through the condensation reaction and/or by use of linkers with phenanthroline/bipyridine units.

Summary of porosity data of COFs

	Experimental		Simulation		
COF-n	BET SA (m²/g)	Excess H ₂ uptake at 1 bar and 77 K (wt%)	Total H ₂ uptake at 100 bar and 298 K (wt%)	Initial Q _{st} (kJ/mol)	References
COF-300	1360	1.1	n/a	n/a	JACS 2009
COF-301	840	1.0	1.2	6.0	AMR 2011
COF-320	1620	0.6	In progress	In progress	AMR 2012
COF-330	n/a	n/a	2.2	4.7	AMR 2012
COF-333	In progress	In progress	2.4	4.3	AMR 2012
COF-340	In progress	In progress	In progress	In progress	AMR 2012
COF-330-Pd*	n/a	n/a	3.1	9.9	AMR 2012
COF-333-Pd*	n/a	n/a	3.2	18.5	AMR 2012

* Doubly interpenetrating structures were used for both calculations.

New Approach: Hexa-azatriphenylene COFs

[Theory] JL Mendoza-Cortes, H. Furukawa, OM Yaghi, WA Goddard III, In preparation. (2012).

New Approach: Hexaazatribyphenylene COFs

[Theory] JL Mendoza-Cortes, H. Furukawa, OM Yaghi, WA Goddard III, In preparation. (2012).

Summary

UCLA team

- Synthesized new air stable COFs through imine condensation (COF-320 and 340)
- Performed metalation experiments of COFs (MTV-COF, phenanthroline-MOF/COFs)
- Synthesized two low density COFs with triptycene unit (0.15-0.21 g/cm³)
- Summary: synthesized COFs which are amenable to functionalization and in accordance to the predicted ones. If we metalate these, we expect room temperature storage (4 wt% total H₂ uptake).

Caltech team

- Metalation of phenanthroline moieties COF-330-PdCl2. Increases by 200% in the volumetric capacity and by 50% in the gravimetric capacity to the pristine material) leads to 3.1 wt% total (2.2 excess)RT H₂ uptake
- COF-333-PdCl2. Metalation increases by ~300% in the volumetric capacity and by ~50% in the gravimetric capacity because of higher density of metals in the structure). Leads to 3.2 wt% total (2.4 excess)RT H₂ uptake
- Predicted binding energy with all first row transition metals to identify best candidates
- COF-42, and 43 Calculated surface area of and predicted their H₂ isotherms (298 K, up to 100 bar)
- COF-Hat and COF-Hatby predicted H₂ isotherms both reach at least 6 wt% total (at least 4 wt% excess at 298 K, up to 100 bar).

Technology transfer/collaborations: Active relationship with collaboration partners and BASF (organic synthesis, material design, structural analysis).

Review criterion

The GO/NO-GO criteria (September 2012)

Metalated COFs will be prepared. Target Q_{st} : 15 kJ/mol, target total H₂ uptake at 80 bar and room temperature: 4 wt% and 30 g/L.

To achieve room temperature hydrogen storage, we carried out systematic survey using both experiment and theory

- Designed and prepared low density COFs with potential metal binding sites.
- High throughput screening of H₂ binding energy with organic linkers and metals using quantum chemistry based Force Field
- identified metalated candidates that promise to approach DOE volumetric targets.
- Have not yet been successful in synthesizing these most promising targets, but hopeful of near term success

Work to be performed

Full characterization of new COFs (e.g. COF-320, 333, 340)

Recently prepared COFs will be fully characterized, including degree of interpenetration and stability.

- [Exp]Complete standard characterization (XRD, NMR, IR, EA, porosity tests, stability)
- [Exp]Large scale synthesis of organic links to prepare large quantity of COF samples.
- [Exp]Optimize the activation conditions for the best surface area. H₂ isotherms and Q_{st} data will be compared to the predicted data.

Metalation of COFs (e.g. COF-340, 42, and 43)

Based on the prediction by theory, promising TM will be impregnated into COFs

- [Theory] Predict effect of counter anions
- [Theory and Exp]Use weakly coordinating anions, such as BF₄⁻, CF₃SO₃⁻ and PF₆⁻, which could be removed to create exposed metal surface.
- [Theory and Exp]Characterize metalated materials (metal binding fashion, surface area, H₂ uptake, Q_{st})
- [Theory] Develop the vdW-FF for the entire row of early transition metals from our current results
- [Theory] use 2PT approach to calculate phase diagram for H2 inside the pores H2 including counter anions. Also get diffusion coefficients
- [Exp]Optimize the metalation condition and loading amount for high-pressure H₂ tests at room temperature.
- [Exp]High-pressure H₂ isotherms will be measured using best performers.