Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage

C. Wolverton (PI), H. Kung Northwestern University

> V. Ozolins UCLA

A. Sudik, J. Yang Ford Motor Company

NORTHWESTERN UNIVERSITY

UCLA

ST028

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 9/1/08 (Funding started Feb. 09)
- Project End Date: 8/31/13
- ~60% complete

Budget

- Total Budget: \$2714K
 - DOE Share: \$2160K
 - Contractors Share: \$554K
- Funding for FY11: \$200K
- Planned FY12: \$400K

Barriers

- Barriers addressed
 - P. Lack of Understanding of Hydrogen Physisorption and Chemisorption
 - A. System Weight and Volume
 - E. Charging/Discharging Rates

Partners

- Northwestern University
- UCLA
- Ford Motor Company
- Project lead: Northwestern University

Relevance - Project Objectives

- Our project: <u>Combine</u> materials from <u>distinct</u> <u>categories</u> to form novel multicomponent reactions
- Examples of systems to be studied include mixtures of complex hydrides and chemical hydrides and novel multicomponent complex hydride materials and reactions

Approach

Our approach involves a powerful blend of:

1) H₂ Storage measurements and characterization, 2) State-of-the-art computational modeling, 3) Detailed catalysis experiments, 4) In-depth automotive perspective

Hydrogen Storage Measurements and Auto Perspective (Sudik and Yang, Ford) Computational Prediction of Novel Reactions (Wolverton, Ozolins)

Kinetics/Catalysis Experiments (Kung, NU)

NORTHWESTERN UNIVERSITY UCLA

Technical Accomplishments: Experimental Screening & Testing of Theoretical Predictions

Experimental Objectives:

Synthesize, characterize, and test promising storage reactions predicted by computation
Interface with kinetics-focused work to provide

materials of interest for catalysis studies and assist in detailed testing of catalyzed reactions.

Predicted Compositions of Interest	Experimental Status		
$(NH_4)_2B_{12}H_{12}$	Material received from OSU (Zhao)		
$5Mg(BH_4)_2 + 2LiBH_4$	Material prepared & experiments initiated		
Mg(BH ₄) ₂	Deferred given existing literature data		
$Mg(BH_4)_2 + Mg(NH_2)_2$	Material prepared & experiments initiated		
$5MgH_2 + MgB_{12}H_{12}$	Deferred given existing literature data		

= current experimental focus

- o Is there experimental evidence of a new reactant structure (e.g., Mg-B-N-H)?
- o What is the experimentally observed desorption pathway?
- How do these results compare with predictions?

$2\text{LiBH}_{4} + 5\text{Mg}(BH_{4})_{2}$: Phase Evolution

2LiBH4 + 5Mg(BH4)2 BM 5hrs 1/9/12

- XRD indicates initially similar to physical mixture, evolution in 2-3 steps:
 - ~200-250 °C : Mg(BH₄)₂ & (possibly) LiBH₄ consumption
 - ~250-300 °C : Continued Mg(BH₄)₂ consumption, formation of MgB₂ or possibly MgH₂
 - Possible 3rd step over 350 °C : continued MgB₂ formation, other unidentified phase?

*Effect of 3 wt. % Co-activated carbon on the dehydrogenation of 2LiBH*₄-5Mg(BH₄)₂

Phys. Mixture of 2 wt. % Ni-AC catalyst further facilitates dehydrogenation of LiBH₄

- AC alone greatly enhanced LiBH₄ dehydrogenation.
- The more AC, the faster the rate.
- Addition of Ni further
 improved
 - dehydrogenation kinetics.
- Future work includes using infusion technique.

LiBH₄ dehydrogenation **Model for Mass Transport**

$$(\text{LiBH}_{4})_{\text{solid}} \rightarrow \frac{1}{12}(\text{Li}_{2}\text{B}_{12}\text{H}_{12})_{\text{solid}} + \frac{5}{6}(\text{LiH})_{\text{solid}} + \frac{13}{12}(\text{H}_{2})_{\text{gas}}$$

$$\rightarrow (\text{B})_{\text{solid}} + (\text{LiH})_{\text{solid}} + \frac{3}{2}(\text{H}_{2})_{\text{gas}}$$

$$1 \text{ LiBH}_{4}: \text{H}_{2}: \text{LiH} \rightarrow \text{equilibrium}$$

$$\rightarrow \text{C}^{1}[\text{defects}]$$

$$2 \text{ LiBH}_{4}: \text{H}_{2}: \text{Li}_{2}\text{B}_{12}\text{H}_{12} \rightarrow \text{equilibrium}$$

$$\rightarrow \text{C}^{2}[\text{defects}]$$

$$2 \text{ LiBH}_{4}: \text{H}_{2}: \text{Li}_{2}\text{B}_{12}\text{H}_{12} \rightarrow \text{equilibrium}$$

$$\rightarrow \text{C}^{2}[\text{defects}]$$

$$\nabla C = \frac{C^{1}[\text{defects}] - C^{2}[\text{defects}]}{d}$$

$$J = -D\vec{\nabla}C$$

2

Native defect concentration gradient

Can [BH₃] diffuse through LiBH₄ ?

 $[AlH_3]$ diffusion in NaAlH₄

[BH₃] $^{i}\mathrm{H}^{-}$

K. J. Michel and V. Ozolins, J Phys Chem C **115** (43), 21443 (2011). AIH₃ vacancy diffusion in sodium alanate: AIH₃ vacancy leaves a negative H. The H then combines with the neighboring AIH₄ unit, thus leaving space for the vacancy to diffusion.

After taking BH_3 from the original BH_4 negative unit, a negative H forms, which lies exactly at the original BH_4 position. The negative H does not combine to the neighboring BH_4 unit.

ⁱH⁻ left by [BH₃] blocks [BH₃] diffusion.

Very different diffusion in borohydrides vs. alanates: Mass transport in LiBH₄ is very low.

Mg(NH₂)₂+Mg(BH₄)₂: Desorption Quantification and Reversibility

- Ammonia release nearly undetectable
- The dangerous compounds diborane and borazine are not detected
- Mg(NH₂)₂ + Mg(BH₄)₂ exhibits a comparatively very low desorption onset (~180°C)

- Mg(NH₂)₂ + Mg(BH₄)₂ desorbed
 ~8.3 wt. % at 380 °C
 - No reversibility at 250°C or 380°C (computation also supports lack of reversibility)

$Mg(NH_2)_2 + Mg(BH_4)_2$: Phase Evolution

Mg(NH2)2 + Mg(BH4)2 BM 5Hrs 2/2/2012

- XRD: Possible new RT phase, only 1 step observed at ~150 °C
 - Low temperature signal improved vs. prior work
 - Strongest peaks overlap with substrate, baseline is high possibly some amorphous character?

Technical Accomplishments: Experimental Testing of Predicted Compounds

Previously, no known quarternary borohydride/amide compounds in Mg-B-N-H system

 $Mg(BH_4)_2 + Mg(NH_2)_2 \rightarrow MgBNH_6$

kJ/(mol Mg)	$\Delta E_{ m Static}$	$\Delta H_{\mathrm{ZPE}}^{T=0\mathrm{K}}$	$\Delta H^{T=300\mathrm{K}}$
Mg(BH ₄)(NH ₂)	-9.75	-8.18	-8.63

New, predicted compound stable w.r.t. $Mg(BH_4)_2 + Mg(NH_2)_2$

Mg(BH₄)(NH₂)-PEGS (4 fu) Space group: Ima2 (46)

Y.-S. Zhang and C. Wolverton, unpublished (2011).

Technical Accomplishments product in the decomposition of Mg-B-N-H

The pDOS of the theoretically predicted MgBH₄NH₂ is in a good agreement with the experimental IR measurements.

The decomposition products contain part of Mg(BH₄)₂ and compounds including N-B-N linear cluster, such as Mg₃BN₃.

DOWNSELECT: End work on borohydride/amide combination (due to lack of reversibility and formation of B-N bonds in product).

All possible $Mg(BH_4)_2$ decomposition pathways

All [B_nH_m] intermediates have higher reaction energies than MgB₁₂H₁₂. Only the reactions to MgB₂H₆ and Mg₃(B₃H₆)₂ are close to the MgB₁₂H₁₂ convex hull. Mg₃(B₃H₆)₂ is a metastable intermediate in the decomposition of Mg(BH₄)₂. Y. Zhang, et. al. submitted to J. Phys. Chem. C

3 wt.% Co-AC catalyst promotes dehydrogenation of Mg(NH₂)₂-Mg(BH₄)₂ and reduces NH₃ formation

(NH₄)₂B₁₂H₁₂: Desorption and Reversibility

 $2(NH_4)_2B_{12}H_{12} \leftrightarrow 4BN + B_{20}H_{16} + 12H_2 \leftrightarrow 4BN + 20B + 8H_2$ 11.3 H₂ wt% W. Q. Sun, et. al. Phys. Rev. B 83 064112 (2011) 11.3 H₂ wt%

 Ammonia release nearly undetectable, and diborane and borazine are not detected

- Partial reversibility (but degrading performance) under cycling at 350°C (2000 psi H₂ recharge at 350°C)
 - Small sample size for (NH₄)₂(B₁₂H₁₂) due to limited quantity may exacerbate response

(NH₄)₂(B₁₂H₁₂): Phase Evolution

- XRD indicates some unidentified phases appearing
 - Initial signal matches pretty well with ICSD $(NH_4)_2(B_{12}H_{12})$ structure
 - Some BN possibly formed, see peaks disappearing at end amorphous w/substrate
- In Situ IR indicates B-N stretch above ~300 °C

Collaborations

Pl's/co-Pl's

Chris Wolverton (Northwestern, lead) Harold Kung (Northwestern) Vidvuds Ozolins (UCLA, subcontract) Andrea Sudik (Ford, no-cost collaborator) Jun Yang (Ford, no-cost collaborator)

Outside Collaborators:

D. Siegel (U. Michigan) E. Majzoub (UMSL) G. Ceder, N. Marzari (MIT) C. Brown (NIST) T. Burrell (LANL) T. Autrey (PNNL) F.-C. Chuang (Nat'l Sun Yat-Sen U) J. C. Zhao (OSU)

Future Plans

- Experimentally characterized storage properties/reactions of (NH₄)₂B₁₂H₁₂ and other predicted reactions; Optimize reversibility conditions for 5Mg(BH₄)₂+2LiBH₄ mixture
- Extend experimental catalyst studies to other predicted promising materials; explore optimal morphology of carbon/metal catalysts;
- Focus experimental efforts on rehydriding reactions/reversibility (subject to pressure limitations of experimental equipment)
- Focus computational efforts on kinetics, defects, diffusion/mass transport/hydrogen dissociation in promising predicted reactions
- Downselect decision: End work on borohydride/amide combinations (No reversibility from computational or experimental work; B-N bonds in product).

Summary – Technical Accomplishments

- H₂ desorption and decomposition pathways have been studied in
 - $5LiBH_4 + 2Mg(BH_4)_2$ (~5.8 wt.% desorbed)
 - $Mg(BH_4)_2 + Mg(NH_2)_2$ (~8.3 wt.% desorbed)
 - (NH₄)₂B₁₂H₁₂. (~4.5 wt.% desorbed)
- Partial reversibility (~1-2.5 wt.%) found in 5LiBH₄ + 2Mg(BH₄)₂ and (NH₄)₂B₁₂H₁₂
- Proposed new metal-carbon catalyst: Tested on NaAlH₄, and applied to Mg(BH₄)₂ + Mg(NH₂)₂, 2LiBH₄+5Mg(BH₄)₂ and LiBH₄; Effective catalyst lowers desorption temperature, improves dehydrogenation rate, and suppresses formation of borane and NH₃
- Downselect the mixed borohydride/amide systems as promising hydrogen storage material (lack of reversibility and B-N bonds in products)
- Predicted a new metastable Mg₃(B₃H₆)₂ intermediate in decomposition of Mg(BH₄)₂, but showed that recently-proposed Mg(B₃H₈)₂ is not stable.
- PEGS+DFT combined of experimental measurements is used in unique way to solve amorphous AIB_4H_{11} polymeric structure (w/ JC Zhao)
- Using the predictive models of defects, kinetics of mass transport: mass transport in LiBH₄ is very low (much lower than that in NaAlH₄)

Technical Accomplishments: Experimental Testing of Predicted Reactions

V. Ozolins, E. H. Majzoub, and C. Wolverton, JACS **131** (1), 230-237 (2009).

Metal NPs supported on activated carbon (AC) and good catalyst-hydride contact facilitate hydride dehydrogenation

Model depicting the metal/carbon catalyst facilitated dehydrogenation of complex hydride

Effect of carbon based catalyst on the dehydrogenation of different hydrides:

- Mg(NH₂)₂-Mg(BH₄)₂
 - Mg(BH₄)₂-LiBH₄
 - LiBH₄

Technical Accomplishments: New Theoretical Predictions

- Decomposition of Mg(BH₄)(NH₂)
- New borohydride compounds
 - $-Mg_{3}(B_{3}H_{6})_{2}$
 - $-AIB_4H_{11}$
- Diffusion & mass transport (required for fast kinetics)

Technical Accomplishments Mg(BH₄)₂ decomposition intermediates search

Technical Accomplishments New metal borohydride: AlB₄H₁₁

In collaboration with Xuenian Chen and JiCheng Zhao (OSU)

• AlB₄H₁₁ synthesis:

 $2AI(BH_4)_3+B_2H_6 \rightarrow 2AIB_4H_{11}+4H_2$

- AlB₄H₁₁ attractive properties
 - High hydrogen content (13.5% H₂)
 - Moderate stability
 - Decomposition temperature ~125 °C
 - Endothermic dehydrogenation
 - Rehydrogenation at moderate conditions
- Unknown AlB₄H₁₁ structure: amorphous

Can we use PEGS+DFT to predict the structure? Or at least help interpret the experimental data?

Polymer chain is composed of Al, $[BH_4]$, $[B_3H_7]$ groups, which are confirmed by experimental NMR measurements.

PEGS+DFT, combined of experiment, used in unique way to solve amorphous polymeric structure.