

Electrochemical Reversible Formation of Alane

Ragaiy Zidan

Energy Security Directorate

Savannah River National Laboratory

2012 U.S. DOE HYDROGEN and FUEL CELLS PROGRAM and VEHICLE TECHNOLOGIES PROGRAM ANNUAL MERIT REVIEW and PEER EVALUATION MEETING

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Dr. Scott Greenway

(Electrochemistry)

Dr. Douglas Knight

(Chemical Synthesis and X-ray analysis)

Dr. Joseph Teprovich

(Organic Chemistry and Nano Technology)

Dr. Robert Lascola

(Raman Spectroscopy)

Overview

Timeline

Start: 10/1/06

End: Continuing

Percent complete of activities proposed for FY12: 30%*

Barriers

- Low-cost, energy-efficient regeneration
- Full life-cycle analyses is needed
- Environmental impacts
- By-product and/or spent material
- Infrastructure requirements for off- board regeneration

Collaborators

- Brookhaven National Laboratory
- University of Hawaii
- University of New Brunswick

Budget*

- Funding received in FY11
 - \$450K (\$200K received September 2011)
- Funding for FY12
 - \$400K (\$250K received March 2012*)

Relevance: Project Objectives

Overall Objectives

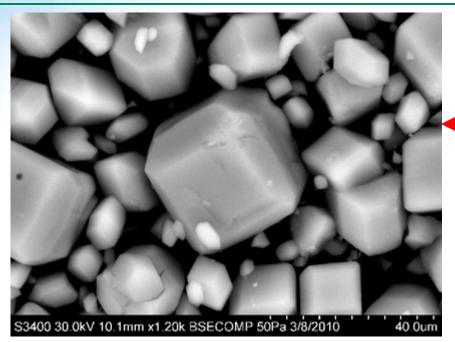
• Develop a low-cost rechargeable hydrogen storage material with cyclic stability, favorable thermodynamics and kinetics fulfilling the DOE onboard hydrogen transportation goals.

Aluminum hydride (Alane - AIH_3), having a gravimetric capacity of 10 wt% and volumetric capacity of 149 g/L H_2 and a desorption temperature of ~60°C to 175°C (depending on particle size and the addition of catalysts) has potential to meet the 2015 DOE onboard system desorption targets

Specific Objectives

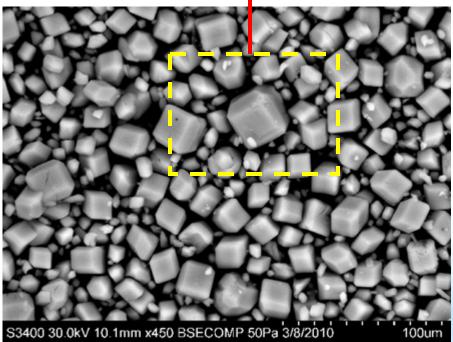
- Avoid the impractical high pressure needed to form AIH₃
- Avoid chemical reaction route of AIH₃ that leads to the formation of alkali halide salts such as LiCl or NaCl
- Utilize electrolytic potential to translate chemical potential into electrochemical potential and drive chemical reactions to form AIH₃

Overall Objectives :


Develop Economical Methods to form Aluminum Hydride (AIH₃) from Aluminum (AI) and dehydrogenated AIH₃

Specific Project Objectives:

- Avoid the impractical high pressure needed to form AIH₃
- Avoid chemical reaction route of AIH₃ that leads to the formation of alkali halide salts such as LiCl or NaCl
- Utilize electrolytic potential to translate electrochemical potential into chemical potential and drive chemical reactions to form AlH₃


Relevance: Safety and Alane

- Simple passivation methods were performed to make alane safe to handle
- After surface passivation, material does not ignite in air or water
- Passivation reduces H₂ capacity by less than 1%.

Safer to handle than complex hydrides

Particle Size: 4 – 32 µm

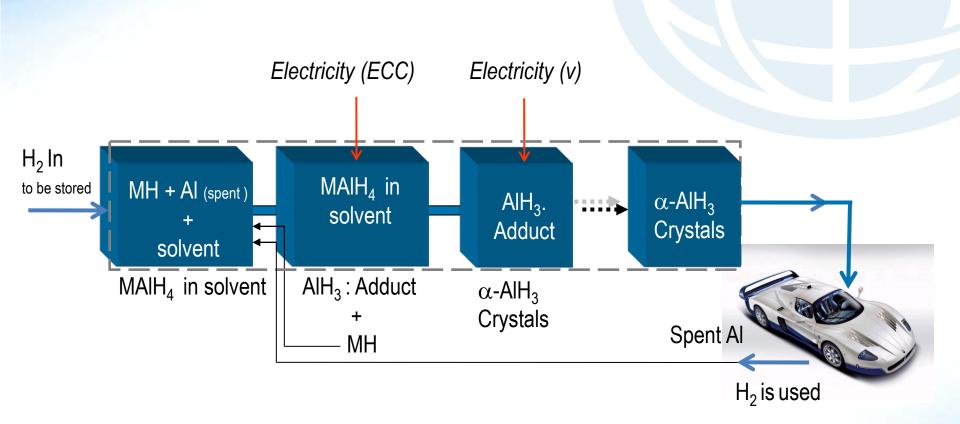
Approach: Utilizing Electrochemical Methods

Technique: Utilize electrolytic potential, E, to drive chemical reactions to form AIH₃ Based on Gibbs free energy and Faraday equation:

 $\Delta G = -nF\Delta E \quad \rightarrow \ \Delta G = RT\ln p$

*Motivation: Electrochemical recharging represents a different, promising, and AIH*³ *recharging*

Reactions	E ⁰ (V) vs SHE	Eq. No.
$4AlH_3 + 3Na^+ + 3e^- \leftrightarrow 3NaAlH_4 +$	- <i>Al</i> –1.57	(1)
$AlH_{3} + \frac{1}{2}H_{2} + Na^{+} + e^{-} \leftrightarrow NaAlH$	4 -1.73	(2)
$Al + 2H_2 + Na^+ + e^- \leftrightarrow NaAlH_4$	-2.28	(3)
$\frac{1}{2}H_2 + Na^+ + e^- \leftrightarrow NaH$	-2.37	(4)
$Na^+ + e^- \leftrightarrow Na$	-2.71	(5)
$4AlH_3 + 3Li^+ + 3e^- \leftrightarrow 3LiAlH_4 + 3E^- \otimes 3E^- \otimes 3E^- \otimes 3E^- \otimes 3E^- \circ 3E^- \otimes 3E^- \otimes$	<i>Al</i> –1.89	(6)
$AlH_3 + \frac{1}{2}H_2 + Li^+ + e^- \leftrightarrow LiAlH_4$	-2.05	(7)
$Al + 2H_2 + Li^+ + e^- \leftrightarrow LiAlH_4$	-2.56	(8)
$\frac{1}{2}H_2 + Li^+ + e^- \leftrightarrow LiH$	-2.33	(9)
$Li^+ + e^- \leftrightarrow Li$	-3.04	(10)


- Requires polar, aprotic, anhydrous solvent
- Must have good solubility for reactants
- THF and Et_2O are proven, stable solvents

$$MAlH_4 \leftrightarrow M^+ + AlH_4^-$$

* Values were obtained using HSC Chemistry 5.11

Approach: Electrochemical Technique for Off Board Regeneration of Alane

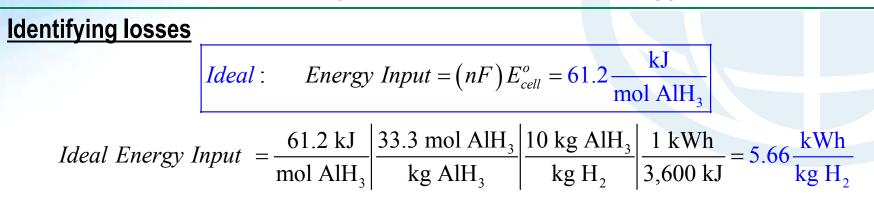
M=Na, Li, K..

ECC = Electrochemical Cell V = Vacuum Pump

Possible Reactions When AlH₃ is Generated in a Closed Material Cycle

Anode:

Reaction 1: $AIH_4^- \rightarrow AIH_3 \cdot nTHF + \frac{1}{2}H_2^+ + e^-$ Hydrogen bubbles at the anode Reaction 2: $3AIH_4^- + AI(Anode) \rightarrow 4AIH_3 \cdot nTHF + 3e^-$ Electrode is expected to dissolve


Cathode:

Reaction 1: M^+ H_2 H_2 </

Regeneration: $2 \text{ MH} + 2 \text{ AI} + 3 \text{H}_2 \rightarrow 2 \text{ MAIH}_4$ (M= Li, Na, K...)

Approach : Efficiency and Feasibility of Processes (electrochemical efficiency)

Storage Energy as a Percent of LHV (1 kg basis)

Actual: Energy Input = $5.66 \frac{\text{kWh}}{\text{kg H}_2} \left| \frac{1}{68\%} \right| = 8.32 \frac{\text{kWh}}{\text{kg H}_2} \right|$ 68% is based on overpotential value

Energy Consumption Relative to Energy Stored

Ideal =
$$\frac{5.66 \text{ kWh}}{33.3 \text{ kWh}} x100 = 17\%$$

Actual = $\frac{8.32 \text{ kWh}}{33.3 \text{ kWh}} x100 = 25\%$

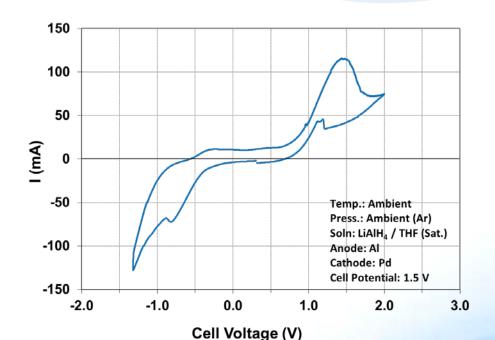
Efficiency

Ideal = 83%

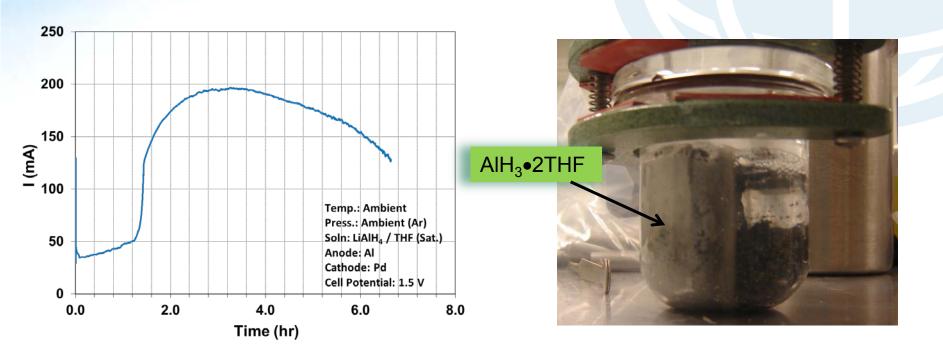
Actual = 68-75%

This efficiency is only the electrochemical efficiency

10


Technical Progress: Electrochemical Electrolyte Regeneration

More effective route for alane separation


Obtaining solid AIH₃ • 2THF *in-Situ*

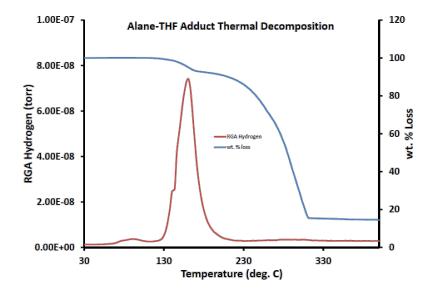
- Glass frit divided cell for alane formation
- Saturated LiAIH₄ / THF solution is viscous
- Alane formation starts at low potentials (0.6 V)

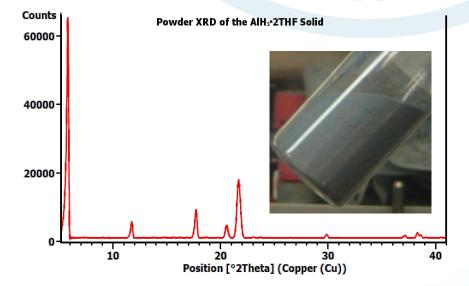
Saturation give high currents

Technical Progress: Electrochemical Alane in Saturated Electrolyte Solutions

- Pd forms activated Al layer in one hour
- Highest alane form currents observed in this cell
- Alane adduct only precipitates on one side

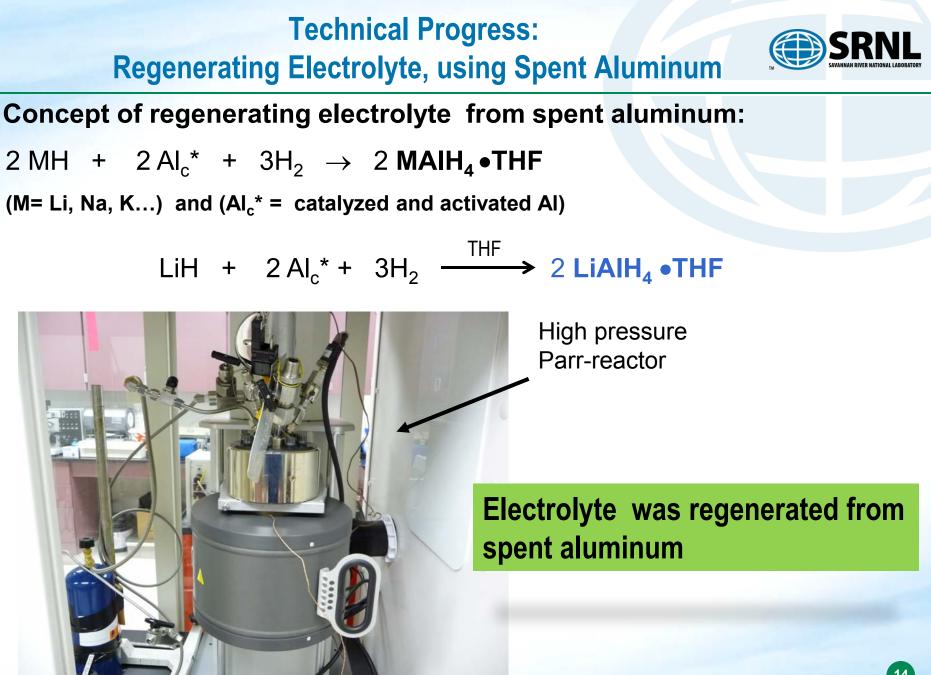
- Gray-white AIH₃•2THF adduct precipitates at cathode
- Pd electrode contains low density activated aluminum product
- LiAlH₄ not present in precipitate


Technical Progress: Precipitation of Alane•THF


13

 $3AIH_4^-$ + AI (Anode) \rightarrow $4AIH_3 \cdot 2THF$ + $3e^-$

Electrochemical reaction was preformed in saturated solution of LiAlH₄



- Alane-THF forms minutes during heating
- Solid insoluble in most solvents

- Gray solid typical of Alane-THF
- Improving economical route for alane synthesis

Solid AIH₃•2THF successfully precipitated, same precipitation is expected with other solvents

Technical Progress: Recycle Spent Aluminum

- Electrolyte recycled chemically
- Inexpensive catalyst is identified for reaction
- Investigating best electrodes for electrochemical recycling

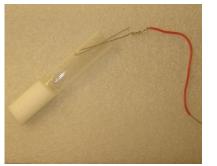
Technical Progress: High Pressure Cell for Alane Regeneration

The aluminum anode in a H₂ pressurized electrochemical cell is rapidly consumed

The Pressurized Electrochemical cell in

- Pressure: 500 psig
- Potential: 1.5 V

Cell is capable of operating at elevated pressures and temperatures


Technical Progress: High pressure cell for alane regeneration

Anode: Activated AI (from AIH₃)

The Pressurized Electrochemical cell in operation

Electrochemical regeneration, using spent aluminum was performed in high pressure cell

The spent alane can be either pressed into solid electrodes or inserted as a powder into porous electrodes as shown below.

- Jason Graetz, James Wegrzyn and Jim Reilly (BNL)
- Craig Jensen (University of Hawaii)
- Sean McGrady (University of New Brunswick)
- Rana Mohtadi and Sivasubramanian PremKumar (Toyota)

Proposed Future Work

> Develop In-situ Recycling Methods

- Characterize electrodes for LiH production
- · Develop cell designs that allow for increased LiH production efficiency
- Understand the role of the solvents and alane precursors to promote selectivity and yield

> High-Pressure Electrochemistry to Improve Selectivity and Yield

- Investigate the selectivity improvement for electrochemical reactions at high pressure
- Characterize changes in product composition when changing reaction conditions
- Characterize the effect of hydrogen gas bubbling on improving mass transfer in the system

> Advanced Alane Separation and Analytical Procedures

- Develop advance adduct systems to facilitate the crystallization of AlH₃ in DME
- Use saturated solution methods with DME
- Utilize electrochemistry to produce AIH₃ in DME and detail the electrochemical potentials
- Demonstrate DME separation process and analyze the crystallized alane product

Project Summary

Relevance

- -Aluminum hydride (Alane AIH₃), having a gravimetric capacity of 10 wt% and volumetric capacity of 149 g/L H₂ and a desorption temperature of ~60°C to 175°C has potential to meet the 2015 DOE onboard system desorption targets.
- -Starting material (aluminum) is relatively inexpensive
- -Safer to handle in air and moisture than complex hydrides and many other high capacity hydrides
- -Safety technology is well developed and understood

Approach

- -Utilize electrolytic potential, E, to drive chemical reactions to form AIH₃, based on Gibbs free energy relation to applied potential
- -Non-Aqueous electrolytes need to be identified to use in the Electrochemical Cell
- -The electrolysis is carried out in an electrochemically stable, aprotic, and polar solvent such as THF or ether. MAIH4 (M = Li, Na) is dissolved in this solvent,
- -Adducts such as 4AIH₃ nTHF is expected to form and alane is separated from the solvent
- -Efficiency is an important issue and lowering cost must be taken into account

Technical Accomplishments and Progress (as of 3/16)

- >Continued to produce gram quantities of alane with high purity
- >LiAlH₄ was also used to produce alane in a saturated solution
- >An electro-catalytic additive was discovered was added to greatly enhance the process
- >Started Improving efficiencies in every step of the regeneration method and achieved success
- Yield was increased and higher electrochemical cell efficiency was achieved
- Absence of dendrites
- Demonstrated the formation and precipitation alane. THF in-situ during electrochemical process
- A pressurized ECC is constructed and used for close regeneration cycle and the use of more efficient separation
- >Brought to the forefront interest in the field of organic based electrolyte electrochemistry

Collaborations

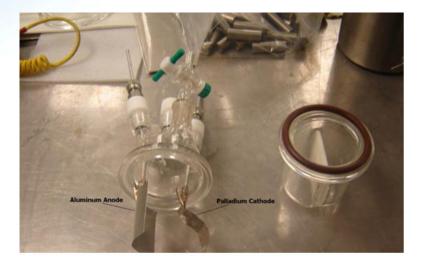
BNL, University of Hawaii, University of New Brunswick, Toyota research center

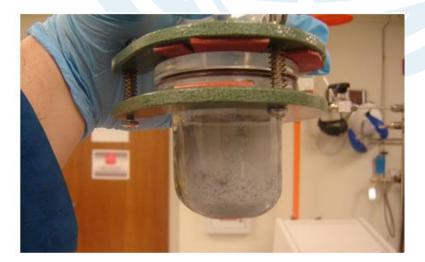
Proposed Future Work

-Continue work to increase yield and efficiency

- -Electrochemical Process Optimization
- -Advanced Alane Separation and Analytical Procedures
- -Scale Up a closed cycle

END of Slides


Ragaiy Zidan 999-2W Energy Security Directorate Savannah River National Laboratory



Extra Slides

Electrochemical alane production is optimized through the use of high SRNL saturated electrolyte solutions

THF is saturated LiAlH₄ using a Parr reactor under moderate heat and hydrogen pressure.

The AIH₃-2THF precipitates as the entire solution becomes saturated with the electrochemically formed alane.