Hydrogen Storage in Metal-Organic Frameworks

Craig M. Brown,¹ Jeffrey R. Long,^{2,3}

Martin Head-Gordon,^{2,4}

¹National Institute of Standards and Technology ²Department of Chemistry, University of California, Berkeley ³Materials Sciences Division, Lawrence Berkeley National Laboratory ⁴Chemical Sciences Division, Lawrence Berkeley National Laboratory

May 16, 2012

Project ID # ST103

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Project start date: 01/01/12

- Project end date: 12/31/14
- Percent complete: 5%

Timeline

Budget

- Total project funding \$2.625M
 - DOE share: \$2.1M
 - Contractor share: \$0.525M
- Funding received in FY11: \$0
- Planned Funding for FY12: \$0.5M

Barriers

- Identify new metal-organic frameworks enabling a hydrogen storage system achieving:
 - 1.8 kWh/kg (5.5 wt %)
 - 1.3 kWh/L (0.040 kg/L)
 - -40/60 °C operating temperature

Partners

- National Institute of Standards and Technology
- General Motors
- Project lead-Jeffrey Long, LBNL

The H₂ Powered Car – Current Technologies

About 4-5 kg of H₂ required for a 300 mi range

Compressed Hydrogen Gas (most common)

Significant energy spent in compression process

Liquid Hydrogen

Large energy input for liquefaction

Heavy and expensive cooling unit required

Chemical and Metal Hydrides

High temperatures required for desorption, slow kinetics

Adsorbed on Metal-Organic Frameworks

Schlapback, Züttel, Nature, 2001, 414, 353.

Optimal Binding Enthalpy for H₂

Garrone, et al. Chem. Phys. Lett., 2008, 456, 68.

Ideal Pore Size for H₂ Storage

- Shorter-range influence of pore walls at higher temperatures
- Design of a room temperature sorbent requires careful consideration of both chemical and structural properties

Patchkovskii, et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10439.

Strategies for Improving H₂ Storage Performance

- Lightweight metal ions (Be²⁺, Mg²⁺, Al³⁺)
- Improve gravimetric capacity
- New structure types (particularly with main group elements)

Unsaturated Coordination Sites

- Charge-dense, polarizing binding sites
- M-H₂ interactions at the right enthalpy for reversible storage at 298 K
- Close approach to metal center increases packing density of H₂

Synthesis of a Be-based Metal-Organic Framework

Sumida, K.; Hill, M. R.; Horike, S.; Dailly, A.; Long, J. R. J. Am. Chem. Soc. 2009, 131, 15120.

H₂ Storage Properties of Be-BTB

- High surface area coupled with low isosteric heat of adsorption (*Q*_{st}) facilitates excellent cryogenic storage properties
- Multiple pore apertures of ca. 6-7 Å leads to record gravimetric uptake in a metal-organic framework at 298 K

Synthesis of Fe-BTT – Exposed Fe²⁺ Cation Sites

Sumida, K; Horike, S.; Kaye, S. S.; Herm, Z. R.; Queen, W. L; Brown, C. M.; Grandjean, F.; Long, G. J.; Dailly, A.; Long, J. R. et al. *Chem. Sci.* **2010**, *1*, 184.

D₂ Loading Experiments within Fe-BTT

• At higher loadings, up to 10 binding sites identified within unit cell

Sumida, K; Horike, S.; Kaye, S. S.; Herm, Z. R.; Queen, W. L; Brown, C. M.; Grandjean, F.; Long, G. J.; Dailly, A.; Long, J. R. et al. *Chem. Sci.* **2010**, *1*, 184.

H₂ Storage Properties of Fe-BTT

• Enthalpy of adsorption consistent with the high charge density on Fe²⁺ metal center

Sumida, K; Horike, S.; Kaye, S. S.; Herm, Z. R.; Queen, W. L; Brown, C. M.; Grandjean, F.; Long, G. J.; Dailly, A.; Long, J. R. et al. *Chem. Sci.* **2010**, *1*, 184.

Collaborations

Martin Head-Gordon, UC Berkeley/LBNL(Academic)

-Calculations of H₂ Binding Energies

Theoretical calculations will be utilized to aid in the prediction of key new metal-organic frameworks that may meet DOE H_2 storage targets.

Craig M. Brown, NIST (National Lab)

-Characterization of Framework- H_2 Interactions Neutron methods will give insight into the adsorption of H_2 in newly synthesized porous frameworks.

Anne Dailly, GM (Industry)

-High Pressure H_2 Adsorption Measurements The most promising H_2 storage materials will be further investigated in collaboration with GM by measuring high-pressure (up to 350 bar) adsorption at relevant temperatures.

Opposing Surface Area as a Characterization Tool

Be-BTB large egg-shaped pores small octahedral cages three-dimensional channels Mg₂(dobdc) one-dimensional channels

- Metal-organic frameworks feature a rich diversity in the shape and connectivity of their pores, giving a distribution of opposing wall distances
- Need an algorithm that surveys these distances using the crystal structure

Geometric Calculation of Opposing Wall Distances

- Probe is inserted on the pore surface, and moved away in a direction normal to the surface until it collides with the opposing wall
- This is repeated until the entire pore surface has been traversed by the algorithm to create a distribution of opposing wall distances

Rapid Screening of Structure Types for H₂ Storage

Algorithm could be deployed for rapid examination of a vast database of existing

and theoretical structure types

 Structure types exhibiting narrow distributions at 7 Å and 10 Å can then be experimentally tested for H₂ storage performance

Strategies for Increasing H₂ Binding Enthalpy and Capacity

- Incorporation of high-valent metal cations
- Increase M-H₂ binding enthalpy
- Allows for high metal:ligand ratio

- Multiple metal binding sites for postsynthetic insertion of metal cations
- Potential charge balance offered by –OH containing ligands may lead to increased H₂ uptake

Characterization of Metal-H₂ Interactions

- Neutron methods at NIST encompass a range of seven orders in time- and appropriate storage length-scales
- Inelastic neutron scattering spectra of hydrogen adsorbed at the first (lower curve) and second sites in Cu-BTC. Assignments of rotations (R) and translations (T) are made through DFT calculations.

First-Principles Calculations of Hydrogen Binding Enthalpies and

High Pressure Hydrogen Adsorption Experiments.

- Calculated optimized geometry for hydrogen binding in Mn₃[(Mn₄Cl)₃(BTT)₈]₂.
- Theoretical calculations will be utilized to predict optimal H₂ storage materials
- A custom-made Sieverts apperatus will be used to measure H_2 adsorption at various temperatures up to 350 bar in promising metal-organic frameworks.

Summary

- A synergistic approach to the development of new metal-organic frameworks for hydrogen storage has recently (January 2012) been started.
- The combination of synthesis (Long), theoretical calculations (Head-Gordon), characterization (Brown), and H₂ adsorption measurements (Dailly) will aide in the efficient design and preparation of next-generation storage materials.