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Overview!

Prof. David Dixon!

Project Collaborators!

Technical Barriers (Vehicular)!
A. system weight and volume!
C. efficiency!
E. charging/discharging rates!
R. regeneration process!

Timeline!
start date: April 1, 2012!
end date: March 31, 2015!
Phase I: 4/1/2012 – 9/30/2013!
Phase II: 10/1/2013 – 3/31/2015!
percentage complete: new project!

Proposed Budget!

total project funding: $2,526,606!
DOE share: $2,020,942!
cost share: $505,664!

FY12:  $540,000!

Dr. Paul Osenar!

Dr. Jamie Holladay!
Dr. Tom Autrey!
Dr. Abhi Karkamkar!
Dr. Doinita Neiner!

Prof. Shih-Yuan Liu!
Project Lead!
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Project  
Objectives: 
• develop novel chemical H2 storage materials that have the potential to meet 
  2017 DOE targets for vehicular applications and near-term market applications  
• focus on three classes of materials: 
  liquid-phase, high-capacity, reversible 
 

Tasks 
1) Synthesis of proposed materials (UO, PNNL) 
2) Characterization of synthesized materials (PNNL) 
3) Theory (UA)  
4) Scale-Up Synthesis (UO, PNNL),  
5) Fuel Cell Testing (PNNL, Protonex) 

Team Member Expertise: 
University or Oregon (UO):  synthesis and development of CBN H2 storage materials 
Pacific Northwest National Laboratory (PNNL):   
     • experimental characterization of materials  
       (thermodynamics, kinetics, thermal stability, H2 purity) 
     • scale up synthesis 
University of Alabama (UA):  computational chemistry 
Protonex:  fuel cell manufacturing expertise for near-term market applications  
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Specific Synthetic Targets 
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 Phase I Deliverables & Go/No-Go Criteria 

single component: 
• liquid fuel at 0 °C  
• > 4.5 wt.%, > 40 g H2/L 
• > 95% fuel purity 
• T(release) < 110 °C 
• regeneratable  
 
multi component: 
• liquid fuel at 0 °C 
• > 5.5 wt.%, > 50 g H2/L 
• T(release) < 150 °C 

• ∆G ~ 0 kcal/mol (overall) 
• ∆H = +7 to + 12 kcal/mol H2  
• > 5.0 wt.%, > 40 g H2/L 
• T(release) < 200 °C 

• > 8 wt.% 
• T (release) < 150 °C 
 
PNNL blends (K, L):  
• > 8 wt.% 
• T(release) < 150 °C 

liquid systems high-capacity systems reversible systems 

Task 1 (synthesis):  > 6 CBN materials and > 3 blends made available for characterization 
Task 2 (characterization):  physical properties, thermodynamic & kinetic data, capacity 
measurements, catalyst structure, H2 purity, DSC, TGA, MS, NMR, PCI 
Task 3 (theory):  thermodynamic, kinetic, spectroscopic properties of proposed materials 
 
Phase II: 
Task 4 (scale up):  10x to 100x increase in scale from initial methods (50-200 mg) 
Task 5 (fuel cell testing):  fuel cell testing data with best candidates   



Preliminary Results: A Single-Component 
Liquid H2 Storage Material 

J. Am. Chem. Soc. 2011, 133, 19326-9.  
  

Wei Luo, Patrick Campbell  

Synthesis: 

B 

Highlighted in: 
• C&EN 2011, November 28, page 35. 
• Nature Chemistry 2012, 4, page 5. 
• Nature Climate Change 2012, 2, page 23.  

Synthesis of Material 
B and its desorption 
was accomplished.  
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Fe-Catalyzed H2 Release (Neat Liquid) 

J. Am. Chem. Soc. 2011, 133, 19326-9.  Wei Luo, Patrick Campbell  

Dehydrogenation is feasible at larger scales as a neat liquid. 
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B 

Catalyst particles (black) are 
on the surface of a magnetic 
stir bar.  



PNNL Expertise: 

• Thermodynamics (enthalpies)  
– Reaction Calorimetry, PCI, NMR 

• Kinetics (rates) 
– gas buret, PCI, in-situ NMR 

• Thermal Stability 
– TGA, PCI, Volumetric gas burette 

• Regeneration Process 
– NMR to identify structures in 

products. Required to enable a 
rational approach to regeneration 

• Impurities (volatiles) 
– TGA/MS, TPD/IR,RGA 

 
 

 

PNNL has the experience and unique capabilities needed  to characterize H2 storage 
materials.  Characterization will provide the required insight to make rational 
decisions on the down-selection of materials to meet or exceed US DRIVE technical 
targets. 

Our approach is to use multiple 
techniques to characterize materials to 
minimize errors in analysis  
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The University of Alabama: 
Objectives & Approaches 

• Predict thermodynamic, kinetic, and spectroscopic 
properties of A – L 
 

• Predict H2 release mechanisms 
 

• Predict regeneration mechanisms 
 

• Help to develop potential catalysts 
 
 

• Use correlated molecular orbital theory (Feller, Peterson, 
Dixon composite approach & G3MP2) and density functional 
theory with self-consistent reaction fields to predict reactions 
in the gas phase and in solution with different solvents 
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UA: High Level Computational Thermochemistry 
Total atomization energy (TAE) 
calculated at the CCSD(T) level 
extrapolated to the complete basis 
set limit (CBS) using the 
augmented-correlation consistent 
basis sets 
+ Core corrections – CCSD(T)/cc-
pwCVTZ level 
+ Scalar relativistic correction – 
CI(SD)/cc-pVTZ (MVD) or MP2/cc-
pVTZ DK (DKH) 
+ Atomic/Molecular = Total spin orbit 
correction 
+  Zero point energy – MP2/aug-cc-
pVTZ level 
+  Thermal correction (0K → 298 K) 
– MP2/aug-cc-pVTZ level.  
Atomic heats of formation ΔHf to get 
molecular heats of formation ΔHf 
N7 method 

Gaussian09, MOLPRO, NWChem 

E = ECBS + Ecore + ESR + ESO + EZPE 

Eatomization = Eatoms - Emolecule  

Feller-Peterson-
Dixon (FPD) 
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Nucleophilic Aromatic Substitution 
Reactions of 1,2-Dihydro-1,2-
Azaborine 

A. N. Lamm, E. B. Garner, III, D. 
A. Dixon, and S.-Y. Liu, Angew. 
Chem. Int. Ed., 2011, 50, 8157-
8160. 

G3MP2 + 
COSMO solvation 
model in Et2O 
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Alabama has the 
expertise to predict 
reaction mechanisms 
related to BN 
heterocycles.   



 Founded in 2000; headquartered in Southborough, MA with 48 
employees 

 Exceptional team with deep roots in fuel cell and high technology  
 Listed on the AIM in July 2006; proactively delisted in June 2010 

 Clean, quiet, efficient and lightweight fuel cell power solutions  
 High-performance  and reliable fuel cells for military applications 
 Runs on a range of fuels to deliver environmentally friendly energy 

 Targeted applications include: military battery charging, UAV 
power, APU, general portable, and others 

 Key strategic partnerships with both military and commercial 
leaders 

 Accelerating product revenue as products transition from trial to 
deployment 

 2011 product revenue projected growth at over 90% 
 Major shareholders include Parker Hannifin, Goldman and 

Conduit Ventures 

 Leading provider of 100 - 1000 watt fuel cell power solutions 
 Only fuel cell manufacturer to specialize in both PEM and SOFC 

designs 
 Over 100 granted and pending patents on key technology 

Protonex: Perspective from Private Sector 

Organization 

Solution 
Overview 

Value 
Proposition 

Customer 
and Partner 

Traction 

Financial 
Profile 
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• A leading provider of 100 - 1000 watt fuel cell power solutions 

– Focused on a broad range of applications under-served by batteries and generators 

– Providing clean, quiet, efficient, lightweight, high performance power solutions 

– Utilizing advanced PEM and SOFC technologies 

Proton Exchange Membrane (PEM) 
– Fuels 
Methanol 
Chemical Hydride 
Hydrogen 

– Operating temperature: 50˚C – 75˚C 

   Solid Oxide Fuel Cell (SOFC) 
– Fuels 
Propane 
Gasoline, Diesel and JP-8 
Bio and renewable fuels 

– Operating temperature:  650˚C - 750˚C 

PROVIDING FUEL FLEXIBILITY TO ADDRESS MULTIPLE APPLICATIONS. 
PROTONEX IS THE ONLY COMPANY WITH BOTH PEM AND SOFC 

Protonex Technology 
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Backup Power 
 Broadband / CATV 
 Telecom Networks 
 Critical Systems 
 Traffic Systems Recreation 

 RV Power 
 Marine Power 
 Campsite/Cabins 
 General Portable 

Emergency 
 Homeowners 
 Battery Chargers 
 Comm. Equipment 
 Security Systems 

Military 
 Generators/APUs 
 Battery Chargers 
 UAV/UGV/UUV 

Power 
 Power Managers 

Government 
 First Responders 
 Generators/APUs 
 Command Centers 
 Remote Power 

Professional 
 Generators/APUs 
 Battery Charging 
 Scientific Equipment 
 Video Equipment 

Renewable 
 Off Grid Homes 
 Small Solar Systems 
 Small Wind Systems 
 Remote Monitoring Current Targets 

Transport 
 Truck Idling APU 
 Personal Mobility 
 Small EVs 

 
 
 

Potential Near-Term Application Opportunities 
14 

http://protonexfsdc/Protonex%20Logos/Logo%20Color%20Small%20With%20Tag.jpg



