

U.S. DEPARTMENT OF

Hydrogen Production and Delivery

Sara Dillich

2013 Annual Merit Review and Peer Evaluation Meeting May 13, 2013

Technology Readiness of DOE Funded Production Pathways

Hydrogen Production — Status & Pathways

Projected High-Volume Cost of Hydrogen for Near-Term Production Pathways

- Status of hydrogen cost (production only, does not include delivery or dispensing costs) is shown in vertical bars, reflecting values based on a range of assumptions (feedstock/capital costs).
- Targets for hydrogen cost are shown in circles.
- Targets shown are normalized for consistency in feedstock assumptions and year-cost basis (2007 dollars)
- Targets prior to 2015 are extrapolated based on 2015 and 2020 targets in the FCT Office's <u>Multi-year RD&D Plan</u>.
- Cost ranges are shown in 2007 dollars, based on projections from H2A analyses, and reflect variability in major feedstock pricing and a bounded range for capital cost estimates.
- Projections of costs assume Nth-plant construction, distributed station capacities of 1,500 kg/day, and centralized station capacities of ≥50,000 kg/day.

Cost Status

Hydrogen Production from Natural Gas: Bridge to Longer-Term, Low-Carbon Technologies

Distributed H₂ production from natural gas steam methane reforming (high volume/economies of scale, 1500 kg/day production)

- Cost of H₂ production not limiting factor
- Cost goals can be met by a wide range of NG prices*
- Focus shifting to longer term, early development, renewable pathways

Natural gas price basis(\$/MMbtu)

*Production Cost Using Low-Cost Natural Gas, September, 2012, http://hydrogen.energy.gov/pdfs/12024_h2_produ ction_cost_natural_gas.pdf

Based on H2A v3 Case Studies @ <u>http://www.hydrogen.energy.gov/h2a_production.html</u> AEO2009 avg NG prices (HHV, \$/MMbtu): \$7.10 (Current, 2010-2030); \$8.44 (Future, 2020-2040) AEO2012 avg NG prices (HHV, \$/MMBtu): \$5.28 (Current, 2010-2030); \$6.48 (Future, 2020-2040)

\$/kg H₂ (produced & untaxed, today's technology) for Varying Natural Gas Spot Prices

Defining Our Strategy

GOAL: Develop technologies to produce hydrogen from clean, domestic resources at a delivered and dispensed cost of \$2-\$4/gge H₂ by 2020

- Updated MYRD&D Chapters posted online
- Updated Production and Delivery Roadmaps submitted to U.S. DRIVE
- Analysis FOA & Project Initiation
- MOU: FCTO & NSF MOU prepared for joint funding of hydrogen and fuel cells R&D
- Hydrogen Production Expert Panel (HPEP) Report prepared
- Independent Panel Review of Compression, Storage, and Dispensing (CSD) Costs
- Workshop on CSD Cost Reduction March, 2013, ANL
- 2013 SBIR topic: H₂ Dispensers

H₂ Production and Delivery Challenges & Strategy

Materials durability, efficiency improvements, and capital cost reductions are key challenges for all production and delivery pathways

H₂ Production and Delivery MYRD&D chapters available at: http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

Budget – P&D subprogram

FY 2013 Appropriation: \$16.5M

FY 2014 Request: \$21M

* Subject to appropriations, project go/no go decisions and competitive selections. Exact amounts will be determined based on R&D progress in each area and the relative merit and applicability of projects competitively selected through planned funding opportunity announcements (FOAs).

2013/14 Emphasis

 FOAs for FY14 new starts: based on updated MYRD&D, Roadmaps and HPEP report

Distributed Production

- Develop production and forecourt CSD technologies for improvements in
 - Cost
 - Balance of plant
 - Reliability

Central

- Innovations in materials, devices and reactors for renewable H₂ production.
- Advanced polymers and composites for H₂ delivery systems

Nuclear Hydrogen Initiative was discontinued at end of FY2009 as a separate program. Funding of high temperature electrolysis continued under the NGNP project through FY2011. After INL demonstration of pressurized stack operation in FY 2012, technology readiness will be sufficiently advanced (TRL5) to allow for further development by industry. Congressional direction to DOE for FY2012 was to focus on conversion of coal and biomass to liquid fuel. No funding for H₂ production from coal was provided.

2013 Progress: Analysis

New Project Initiated

Team:

Strategic Analysis, Inc. PI: Brian James Partners: NREL, ANL

Scope:

- Establish cost and performance baselines and track progress for R&D projects (with R&D project teams)
- Update pathway cases and develop new pathway case studies as needed
- Standardize assumptions & metrics for longer term pathways (with DOE and project teams)

Hydrogen Analysis Model

Required Selling Price of H2 (\$/kg)

	\$/kg (production costs only)	2011 Status	2015 Target	2020 Target	Ultimate Production Target
Distributed	Electrolysis from grid electricity	\$4.20	\$3.90	\$2.30	
	Bio-derived Liquids (based on ethanol reforming case)	\$6.60	\$5.90	\$2.30	
Central	Electrolysis From renewable electricity	\$4.10	\$3.00	\$2.00	\$1_\$2
	Biomass Gasification	\$2.20	\$2.10	\$2.00	ψι-ψε
	Solar Thermochemical	NA	\$14.80	\$3.70	
	Photoelectrochemical	NA	\$17.30	\$5.70	
	Biological	NA	NA	\$9.20	

2013 Progress: Autothermal Reforming of Bio-Derived Liquids

Hydrogen yields depend on composition and properties of bio-oil

Feed-stock	H ₂ g/100g bio-oil
Poplar	11.0
Oak	8.5
Pine	10.5
Oak, lignin-free	3.0 (12)*

*hydrogen yield on water-free basis (ligninfree oak bio-oil fraction contained 74.6% water)

Reforming of poplar and pine bio-oils delivered > $10g H_2$ per 100 g bio-oil.

Lower yield from oak bio-oil due to lower carbon and higher oxygen contents, and lower carbon-to-gas conversion Optimum Process Conditions Identified: 800-850 C, steam-to-carbon ration of 2.5-3.5, Pt/Al₂O₃ catalyst, Space velocity ~ 2000 h-1

H2A v3: \$4.26/kg H2

(Production only, CSD not included) Distributed Production: 1500 kg/day

NREL

2013 Progress: Electrolysis

Greater than 60% reduction in cost of PEM electrolyzers stacks achieved since 2007 (Giner Inc.)

- 75% reduction in part count leading to a 50% reduction in manufacturing labor
- 30% thinner frame reduce cathode and anode support material
- 90% cost reduction of DSM MEA's through fabrication with chemically etched supports
- 66% end plate material cost reduction by using carbon steel in place of stainless steel

Alkaline exchange membrane (AEM) technology offers potential for efficiency & small footprint of PEM stacks, but at lower cost (Proton OnSite)

- Developed OER catalysts for AEM electrolysis
- / Demonstrated performance over >100 h of operation
- ✓ > 80% HHV AEM efficiency shown at bench scale
- Material cost savings potential of > 80% using AEM technology are projected
- Leveraging ARPA-e project on AEM technology for regenerative fuel cell systems
 Electrolyzer Performance, 400 mA/cm²

2013 Progress: Solar-Thermochemical

____/

Innovative chemical reaction materials and reactor designs used to produce hydrogen from sunlight and water through thermochemical processes

R&D Focus	 Materials efficiency and durability (SNL, U of CO) Reactor design (SNL, Univ. of Colorado) Membranes and electrocatalysts (ANL, SAIC, SRNL) Technoeconomic analysis to establish efficiency and durability requirements for meeting DOE cost goal 	SNL reactor design	O ₂ H ₂ H ₂ H ₂ Boorber (1) (2) absorber (1) (3) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5
High Temp 2-Step cycles	 Metal oxides, Perovskite compounds (SNL) Nanostructured hercynite (Univ. of Colorado) 		Univ. of Colorado reactor design modular dish-mounted receiver/reactor
Hybrid Cycles wt Electrolysis Step	 Cu-Cl cycles (ANL/GTI/Penn State) Sulfur-ammonia (SAIC) Hybrid sulfur (SRNL) 		
Reactor Designs	 Particle receiver-reactor (SNL) Absorbing cavity w/ multi-tubular fixed beds (Univ. of Colorado) Bayonet-type reactor (SAIC) 	central receive	dish mirrors r/reactor tower with heliostats
Field Concepts	 Central tower/Heliostat field Central tower/Heliostat with molten salt storage (SAIC) Dish field one reactor/dish (SNL) 	heliostat field	tower heliostat field

2013 Progress: Solar-Thermochemical

Novel perovskite compounds, nanostructured hercynite, split H₂O in 2-step thermochemical cycles

 Synthesized 45 perovskite compounds from 9 elements (Al, Cr, Ce, Fe, La, O, Sr, Ti, Zr) using Sol-gel or Solid State Reactive Sintering (SNL)

Perovskite structure ABO₃

property	ceria (CeO ₂)	perovskite (ABO ₃)	ideal
redox kinetics	FAST	TBD	FAST
redox capacity	LOW	HIGH	HIGH
reduction T _H	HIGH	LOW	LOW
durability	HIGH	TBD	HIGH
earth abundance	LOW/MED	HIGH	HIGH

Patent filed on a perovskite family of Sr - and Mn- substituted LaAlO₃.

- Verified stability of Hercynite redox activity via Raman analysis and >150 cycles testing
- Increased H₂O pressure increases total H₂ produced and peak rates of H₂ production (Univ. of Colorado)

U.S. Patent Issued on Coated Redox Materials for Chemical and Thermochemical Reduction

2013 Progress: Solar -Thermochemical

High performance membranes and electrocatalysts are key for hybrid cycles

Sulfur Ammonia Cycle (SA/C)

- Demonstrated long term voltage stability of complete electrochemical system (500+ hour extended run)
- Identified new membranes with up to 2 orders of magnitude lower sulfite crossover fluxes

Cu-Cl Cycle (ANL /GTI/Penn State)

- 5cm² electrolyzer ran successfully for 168 h at milestone value of 300 mA/cm² at 0.7V
- One cell, 300 cm², electrolyzer ran at >500 mA/cm² at 0.7V (exceeding 2015 design target)

2013 Progress: Photoelectrochemical

Innovative wide band gap semiconductor material systems to produce hydrogen from sunlight and water through low-temperature photoelectrochemical processes

R&D Approach and Focus	 Innovative crystalline, thin-film and nano-structured material systems to meet efficiency, durability and cost requirements Technoeconomic analysis to establish efficiency and durability requirements for meeting DOE cost goal 	III-V material systems R&D utilizing advanced theory, synthesis and characterization capabilities
Efficient Crystalline Systems	 III-V materials and integrated tandem devices (NREL) Stabilization of III-V PEC interfaces (NREL, LANL) 	Pt Counter Electrode
Durable, low- Cost Thin- Film systems	 Novel metal oxide, copper chalcopyrite and silicon carbide thin-film materials and devices (MVSystems, UH) Large-scale integrated thin-film PEC electrode device fabrication (MWOE) 	CuGaSe2 CuIn _x Ga _(1-x) S2
Innovative Nano- structured Systems	 Quantum-confined MoS₂ photocatalysts on nano- structured support scaffold (<i>Stanford, LBNL</i>) Mixed oxide photocatalyst particles (<i>UH</i>) 	1.6 eV 2.0 eV 2.2 eV 2.4 eV
Cross- Cutting PEC Materials R&D Efforts	 Theoretical modeling of PEC interfaces and bulk bandgaps (LLNL, UTA) Advanced spectroscopic characterization (UNLV) Standardized PEC protocols (PEC WG) 	Thin-film and nano-structured materials R&D leveraging theory, synthesis and characterization tools

2013 Progress: Photoelectrochemical

Significant new PEC progress this year in stabilizing high-efficiency crystalline materials and in developing new lower-cost thin films

Developed reproducible process to extend III-V durability at high production rates (NREL / UNLV / LLNL)

Reproducible N_2^+ ion treatment to protect high-efficiency GalnP₂/GaAs tandem PEC devices from corrosion achieved. Durability demonstrated under operating conditions comparable to 25% STH

> No detectable etching in treated tandem photoelectrodes after 24 hours at high current density of ~20mA/cm²

Demonstrated bandgap tuning to optimize a promising thin-film material class (MVSystems / U. Hawaii)

Reproducible control over bandgap achieved in copper chalcopyrite material systems is critical to the design and development of efficient PEC tandem devices based on lower cost thin-films

- Chalcopyrites with bandgap ranging from 1.1eV (selenides) to 2.5eV (sulfides) successfully fabricated,
- In/Ga ratio in sulfides adjusted to match 2.0eV Eg target
- PEC tests show significant charge carriers generation.

2013 Progress: Biological

ENERGY

Innovative reactor configurations and genetic engineering used to improve microbial hydrogen production

R&D Approach	•	Development of strains with improved hydrogen production capacity Technoeconomic analysis to establish efficiency and	Genetic engineering to production capacity	improve strain's hydrogen
		cost goal		AAPE
Develop O ₂ - tolerant photolytic organisms	•	Engineered cyanobacterial strains with non-native, oxygen-tolerant hydrogenases (<i>NREL, JCVI</i>) Algae with modified or replaced hydrogenases to reduce oxygen sensitivity (<i>NREL</i>)		Hydrogenase H* H2 Energy for
Improved photo- biological activity	•	Increase light utilization by reducing collection of excess photons (UC-Berkeley) Improved energy flow from photosynthesis to hydrogen production pathways (NREL, JCVI)	single-chamber MEC	H ₂ O H ⁺ + O ₂ Photosystem I Photosystem I
Feedstocks	•	Improved utilization of less refined biomass feedstocks (cellulose, corn stover) through genetic engineering, optimized mixtures of strains (<i>NREL</i>) Optimized Microbial Electrolysis Cells (MEC) to produce hydrogen from fermentation wastewater (<i>Penn State</i>)		
Reactor designs	•	Improved sequence-batch bioreactor systems (NREL) Innovative MEC designs to reduce or eliminate external power requirements (Penn State)	Cathode Brush anode Improved reactor designs utilization, hydrogen proc	for better feedstock

16

Genetic engineering to improve biological hydrogen production

Cellulose

Eliminating competing metabolic pathways (NREL)

- Developed *Clostridium thermocellum* strain (Δ*hpt*) for improved mutant generation method
- Generated strain missing the pyruvate-toformate pathway (ΔhptΔpfl), which consumes pyruvate that could be used for hydrogen production

Next steps: determine effect on hydrogen production, and knock-out other competing pathways

Improving oxygen tolerance (NREL)

 Demonstrated light-induced hydrogen production in algae with bacterial Ca1 hydrogenase at oxygen concentrations equivalent to 80% of air, more than double the oxygen that wild-type algae can tolerate

Next steps: genetic engineering for high, stable Ca1 hydrogenase expression

Delivery: Compression, Storage and Dispensing (CSD) Cost

Reduction

- Advanced tube trailer GH₂ transport
- Conventional LH₂ transport
- Mobile re-fuelers
- Forecourt GH₂ production

- Improved liquefaction
- Cold GH₂ transport
- Improved, low-cost forecourt technology (compression & storage)
- Pipeline GH₂ transport
- Advanced energy efficient liquefaction
- Dedicated forecourts with advanced compression/ storage/dispensing technology

*Based on 2011 advances projected to high volume

Delivery Challenges and Priorities

Lowering the Cost of Forecourt CSD is a top priority for FY13/14

Near-term

- Improve forecourt compressor cost, reliability & efficiency through improved seals and other R&D advancements
- Address dispenser cost and reliability through SBIR projects and investigation of existing failure modes
- Decrease the footprint and cost of storage at the forecourt through advanced composite designs

Longer-term

- Focus on materials research to enable high volume hydrogen delivery (FRP pipelines, High-pressure composite tube trailers, Carrier technologies...)
- Research and develop advanced compression technologies for high reliability and through-put

CSD Workshop Proceedings posted on FCTO website!

2013 Progress: Analysis

Direct fills from high pressure tube trailers can reduce capital at the forecourt by ~40%

Compression, Storage, and Dispensing (CSD) Independent Panel review of the assumptions used by the hydrogen delivery scenario analysis model (HDSAM) V2.32. Report finalized Q3 FY13

- CSD cost minimized by:
 - Optimized compression to storage capacity
- ✓ 4-5 cascade storage banks
- Direct fills from high-pressure tube trailers

2013 Progress: Forecourt CSD

Demonstrated that high pressure steel-concrete composite vessels (SCCV) for hydrogen storage can exceed the relevant cost targets (ORNL)

Near Term Forecourt Storage (ORNL)

- Validated ability to meet 2020 target of \$1000/kg of hydrogen stored at 860 bar using optimized design (target exceeded).
- Successfully demonstrated ability to use Friction Stir Welding (FSW) to lower manufacturing cost
- Completed a manufacturing study – posted on OSTI: ORNL/TM-2013/113

50/50 split between steel and concrete was selected as the optimal design for cost and strength.

Long Term Forecourt Compression (FCE)

- Reduced electrochemical compressor cell part count through design innovations by >50%
- Increased operating current density by ~3X over the 2010 baseline
- Combined, this results in a greater than 50% cost reduction over the 2010 baseline

2013 Progress: Pipelines for H₂(g) Delivery

Fiber reinforced polymer (FRP) pipelines and new compressor technology can reduce cost

FRP pipeline testing (SRNL)

Can reduce installation costs by 20– 40%

- Fatigue testing completed over the range of 750 to 3000 psig
- Calculated FRP fatigue design curve from data
- Report submitted to ASME for inclusion in B31.12

Detailed designs for high speed centrifugal H₂ compressors (Mohawk)

Potential to reduce capital cost by 20% and O/M costs by 30%

- Selected double-entry design over singleentry
- Completed single stage prototype fabrication and verified achievement of performance goals through testing in air and He at 55,000 RPM

High pressure composite tube trailers show significant potential to meet the 2020 tube trailer delivery targets

Tube Trailer Delivery

(Hexagon Lincoln)

- ✓ Exceeded DOE 2015 delivery capacity target using Hexagon Lincoln's TITAN™ V Magnum Trailer System (originally designed for the 2010 targets)
- 350 bar design shows promise toward the 2020 targets.

	250 Bar (Available)	350 bar (Designed)	DOE 2015 Target	DOE 2020 Target			
Delivery Capacity (Kg)	720	907	700	940			
Capital Cost (\$/kg)	744	710	730	575			
(¢,,,,g)							

Pump rated at 900 bar

Hydrogen P&D Collaborations

For More Information

Hydrogen Production & Delivery Team

Sara Dillich (DOE Headquarters)

Production & Delivery Team Lead (acting) *Bio-Derived Liquids, Solar thermochemical* (202) 586-7925

sara.dillich@ee.doe.gov

Eric Miller (DOE Headquarters)

Photoelectrochemical, Analysis, IEA-HIA (202) 287-5829 eric.miller@ee.doe.gov

Erika Sutherland (DOE Headquarters)

Hydrogen Delivery, Electrolysis, Analysis (202) 586-3152

erika.sutherland@ee.doe.gov

David Peterson (Golden Field Office) Electrolysis, Photoelectrochemical (720) 356-1747 david.peterson@go.doe.gov

Katie Randolph (Golden Field Office) Separations, Biological, Analysis (720) 356-1759 katie.randolph@go.doe.gov

Sarah Studer (DOE Headquarters) Biological Scientist, AAAS Policy Fellow *Biological H*₂ *Production, H-Prize* (202) 586-4031 <u>sarah.studer@ee.doe.gov</u>

<u>Support:</u> Kristine Babick (Energetics, Inc.) Angelo Cangialosi (Energetics, Inc.) Kim Cierpik (CNJV)