Design and Economics of an Early Hydrogen Refueling Network for California

Prof. Joan Ogden Institute of Transportation Studies University of California, Davis May 14, 2013 Project ID # AN 032

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline (NextSTEPS program)

- Start: Jan. 1, 2011
- End: Dec 31, 2014
- 50% Complete

Budget

- Total project funding
 - DOE share: \$240 K (4 years)
 - Contractor share: \$0
- Funding received FY12: \$60K
- Funding for FY13: \$60K

Barriers

- Barriers addressed (from MYPP)
 - Future Market Behavior
 - Inconsistent Data, Assumptions and Guidelines
 - Insufficient Suite of Models and Tools
- Goal Addressed::
 - Provide system-level analysis to support hydrogen and fuel cell technologies development

Partners

- The work was conducted at UC Davis under the NextSTEPS research consortium, which has 23 government and industry sponsors, including USDOE
- UC Davis manages NextSTEPS (see supplemental slides) ²

Relevance

OVERALL PROJECT GOAL: Provide systemlevel technical & economic analysis to support initial rollout of H2 and fuel cell technologies.

DOE BARRIERS (From Analysis Section MYPP)	AN 032 PROJECT GOALS
Future Market Behavior	Analyze strategies for early H2 fueling station placement, numbers and network development, to enable fuel accessibility for initial rollout of H2 fuel cell passenger cars.
Inconsistent Data Assumptions and Guidelines	Develop robust data on costs and performance for early stations and scenarios and strategies for deployment.
Insufficient Suite of Models and Tools	Conduct case studies for California, utilizing GIS-based analysis for station siting and consumer convenience and economics from perspective of the network, individual station owners and consumers (fuel cost). 3

Infrastructure Economic Analysis

- Estimate near term H2 station capital & operating costs
- Consider different infrastructure build-out scenarios over next decade based on cluster strategy
- Analyze economics from several perspectives
 - Station Network
 - Single station owner
 - Consumer (fuel cost)
- Find Cash flow and Break-even year (when can the station produce H2 competitively?)
- Estimate subsidies that might be needed to support early infrastructure
- Sensitivity studies to better understand uncertainties, risks

Project Overview

Approach

Design & Economics of Early H2 Refueling Network for California

Estimate Near Term Station Cost & Performance

- Station costs based on interviews with energy and industrial gas company experts reflecting current and future costs.
 - Onsite Reformer 100-1000 kg/d
 - Onsite electrolyzer 100-1000 kg/d
 - LH2 truck delivery 100-1000 kg/d
 - Compressed gas truck delivery 100-500 kg/d
- For onsite future stations, assume \$0.5-2 million for site prep, permitting, engineering, utility installation, for green-field site before any fuel equipment goes in. H2 equipment costs are added to this.
- For 2012-2014, equipment costs = 2 X H2A "current tech" For 2015-2017, equipment costs = H2A "current tech" Use IGC estimates for low-cost gas truck delivery options

Station Capital Cost	t Assumptions ((\$M) Progess/A	Accomplishments
	2009-2011	2012-2014	2015+
Mob. Refueler 100 kg/d	1.0	1.0	0.4
LH2 Truck Delivery			
100 kg/d	4.0	2.6	2.3
250 kg/d		2.7	2.3
400 kg/d		2.8	2.4
1000 kg/d		3.2	2.6
Onsite Reformer			
100 kg/d	3.5-4.0	3.3	2.6
250 kg/d		4.0	3.0
400 kg/d		4.8	3.4
1000 kg/d		7.8	4.9
Onsite Electrolyzer			
100 kg/d	-	3.2	2.6
250 kg/d		4.2	3.1
400 kg/d		5.3	3.6
1000 kg/d		9.3	5.6 7

Station O&M Cost Assumptions

Progess/Accomplishments

	Variable O&M	Fixed O&M
Mobile Refueler	Compressed H2 supply	100 kg/d: 13 % cap.cost /y +
	\$20/kg H2	\$130,000/y (land rental)
LH2 Truck	LH2 supply+ station LH2	100 kg/d: 11 % cap.cost /y +
Delivery	pump/compression	\$130,000/y (land rental)
	\$10/kg LH2 + 0.81 kWh/kg H2 x	250-1000 kg/d: 11% cap.cost
	electricity price \$/kWh	/y + \$360,000/y (land rental)
Onsite Reformer	NG feed + station H2 compression	100 kg/d: 10 % cap.cost /y +
	0.156 MBTU NG/kg H2 x NG price	\$130,000/y (land rental)
	\$/MBTU + 3.08 kWh/kg H2 x elec price	250-1000 kg/d: 7% cap.cost
	\$/kWh	/y + \$360,000/y (land rental)
Onsite	Electrolyzer electricity +	Same as onsite reformer
Electrolyzer	station H2 compression: 55.2	
	kWh/kg H2 x elec price \$/kWh	

Compressed gas truck delivery H2 Station Cost Assumptions: 700 bar dispensing.

Time frame	Capital Cost	Annual O&M cost \$/yr			
Phase I (<2013)		\$100 K (fixed O&M) +			
100 kg/d -> 170 kg/d	\$1 million	1 kWh/kgH2 x kg H2/yr x \$/kWh			
250 kg/d (has more	\$1.5 million	(compression elec cost)			
ground storage)		+ H2 price \$/kg x kg H2/y			
		(H2 cost delivered by truck)			
<u>Phase 2 (2014)</u>					
100 -> 170 kg/d	\$0.9 million	Same as above			
250 kg/d	\$1.4 million				
<u>Phase 3 (2015+)</u>					
100 -> 170 kg/d	\$0.5 million	Same as above			
250 kg/d	\$0.9 million				
400 -> 500 kg/d	\$1.5-2 million	9			

Progess/Accomplishments

UCD Rollout Scenario Spreadsheet Model

Developed EXCEL based spreadsheet to model economics of different station types and explore costs of rollout strategies

			_	_			_					_						X			
N 🗷 N	Microsoft I	Excel - Su	immaryH	2StationC	osts.LowCos	stTrucks.O	t.12.2011	single sta.	10yrnew(CAFCP.xls											
: Z	<u> </u>	dit <u>V</u> iev	v <u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools <u>D</u>	ata <u>W</u> ind	low <u>H</u> e	lp Ado <u>b</u> e	PDF							Тур	e a questior	for help	-	- 8	×
) 📂 🗔	23	🛕 🗳	° 🛍 🛛 🕷	lin 遇 🗸	10 - 6	Σ-	2↓ 🛍 🤇	o 🗋 : A	Arial	▼ 10	- 1	B I <u>U</u>			\$ %	4.0 .00 0.€ 00.			- <u>A</u> -	
	i 📆 📕																				
<u> </u>	D10		•	fx Lo	wCostGasT	ruckDelv	erv														
	A		В	C	D	E	F	G	Н	1		J		К	L	М	N		0	Р-	
2	All value	s can be	change	d via droj	p-down mei	nus		H2 Price	(for cash	flow calc) \$/kg			10								
3	Vehicle I	ntroduct	ion Scer	ario	Linear			Energy a	nd Feeds	tock Prices											
5	Station In	troduct	ion Scen	ario	8->11->25	->25->25		Natural G	as (comme	ercial rate)			12	\$/MMBTU	1						
6								Electricity	(commerc	ial rate)			0.1	\$/kWh							=
7	STATION	COSTS						Compress	sed H2				6	\$/kg							
8	Station C	ost scei	nario		Low Cost 2	2015+		LH2					10	\$/kg							
10	Station P	ressure	-		JowCostG	▼ TruckDe	lverv	RENEWA	BIE EEEE	STOCKS											
11	"Other"	Station C	apital Co	osts (\$ mi	II 2			Biometha	ne (deliver	ed to station) \$/MMB	1		20	\$/MMBTU	1						
12	Land Rer	ntal Cost	\$/sq/ft/n	no	5			Green Ele	ectricity pre	emium \$/kWh			0.03	\$/kWh							
13								Renewab	le ethanol	(\$/gge)			3	\$/gge							
14								Renewal	ble scena	rio	No renewable	es									
16	-		_																		
17			Ca	sh Flow	for H2 Tra	ansition	Scenario)													
18											Levelized H2	cost (159	% capital i	ecovery fa	actor) \$/kg						
19		0									2009-2011			#DIV/0!							
20	-	² T									2012-2014			#DIV/0!	2						
22	-	1.5									2013-2017			9.2003	, 						
23		1.5					Conito														
24	ear	1				ŧ.															
25	s/v	'1			- /						i otal investm	nent (2009	9-2017)\$	1.06							
26	llar	0.5			1	1		e5			million			1.90	,						
27	<u>ି</u> କ	0.0					Cash i		A												
28	6	0					∗— Cumu	lative cash	TIOW		station capac	city factor		0.7	7						
29		200	5 20 ⁻	10 20	15 / 2020) 2025											Levelized H	2 Cost (\$/	kg)	Dhase	
30	+ -	-0.5 +															Mobile Refu	eler (100 Capacity	21.92	
32											-	_					Compresse	1 Gas Tri	100	/3 71	-
	• • • • _	Introdu	ction \S	cenario	Setup / E	nergy and	Feedstoc	k Prices	Station	Cost Summary /	Transition Sce	ena 🛛 🗶					11				æ
Read	dy			Circular		_							_						NUM		
				-	-			_					_	_		_	2				-
																			10 m		6

Progess/Accomplishments

Estimated Delivered H₂ cost via Gas Truck \$/kg (w/ 2015+ tech, H₂@\$7-9/kg ~cent/mi Gasoline @ \$4.3-5.6/gal)

Progess/Accomplishments

SENSITIVITY STUDY: Delivered H₂ Cost via Onsite SMR \$/kg

(Vary station size, cap. factor, NG price, site prep, land costs)

(w/2015+ tech, H₂@\$5-8/kg ~cent/mi~Gasoline @ \$3-5/gal)

Transition Analysis: Use 2010 CAFCP estimates for FCVs in fleet in Southern California

YEAR	#FCVs in fleet
2011	197
2012	240
2013	347
2014	1161
2015-2017	34,320

Assumption: FCV average H2 usage 0.7 kg/d ₁₃

Rollout Scenario Schedule

(New stations added per year by station type and size)

78 sta. total in 2017, supply H_2 to 34,00 FCVs in SoCal.

#New Sta	2011	2012	2013	2014	2015	2016	2017				
Mobile											
Refueler	4	0	0	0	0	0	0				
Compressed G	Compressed Gas Truck Delivery (for different station sizes)										
170 kg/d	0	0	4	0	0	0	0				
250 kg/d	0	0	0	10	0	0	0				
500 kg/d	0	0	0	0	20	20	20				
Total sta.											
capacity (kg/d)	400	400	1080	3580	11580	21580	31580				
# FCVs in fleet	197	240	347	1161	12106	23213	34320				
H ₂ demand kg/c	a 137	168	250	800	8500	16000	24000				

CASH FLOW for 78 STATION NETWORK: Deliver compressed H2 @\$6/kg, H2 sold @ \$10/kg; Network Capital invest.=\$113 M

CASH FLOW: SINGLE 500 kg/d sta, Progess/Accomplishments Deliver compressed H2 @\$6/kg, H2 sell @ \$10/kg; Station capital cost \$1.5 million, 10 yr Ioan @ 5.5% interest Support needed until cash flow >0, ~\$600K

Summary Results PROJECT GOALS:

Assess alternative strategies for introducing fuel cell vehicles and H2 infrastructure in So. Cal. over the next decade to satisfy the ZEV regulation. Consider station placement, number, size and type of stations.

Analyze infrastructure economics from multiple perspectives: network, station owner, consumer.

KEY RESULTS:

60-80 H2 stations needed to support 34,000 FCVs in So. Cal c.2018

Capital cost to build network \$110-160 million

500 kg/d station shows positive cash flow in 2-4 years, assuming rapid market growth; network breaks even in 5-7 years

Delivered H2 cost: Early 100 kg/d truck-delivery sta. H2 <\$10/kg, later 500 kg/d truck (H2 ~\$7-9/kg) or 1000 kg/d onsite SMR (\$5-8/kg)

Subsidy: Capital+O&M for 18 small stations (100-250 kg/d) & support for 60 500 kg/d stations until cash flow>0 costs \$50-\$70 million 17

Collaborations/Interactions

- California Fuel Cell Partnership: provided survey data for future FCV projections; infrastructure working group discussions
- Air Products and Chemicals, Inc., Linde, Praxair: *information on near term H2 station performance and cost.*
- NREL (Marc Melaina, Brian Bush): H2A model
- California Air Resources Board (Joshua Cunningham) discussions
 on ZEV projections, rollout strategies
- California Energy Commission (Jim McKinney, Tim Olson)
 discussions of strategies for introducing hydrogen and other fuels
- Members of UC Davis H2 Rollout Study (Shell, Chevron, Toyota, Honda, Daimler, GM, CARB) scenario development
- Energy Independence Now: *model comparisons, many discussions*
- University of California, Irvine (Tim Brown, Shane Stevens-Romero); University of California, Berkeley (Tim Lipman) discussions on rollout strategies
- 23 Sponsors of NextSTEPS Research Program (see supplemental slides) for partial support

Proposed Future Work

- Tri-generation strategies for early H₂ infrastructure (residential & commercial bldg.)
- Implications of low cost, plentiful natural gas for H₂ production
- Green H₂ studies (California, US); Potential role of H₂ in low-C energy future
- H₂ Infrastructure Build out Comparison US regions, other countries
- Social costs, materials, land, water issues for H₂, other fuel/vehicle pathways

Project Summary

- **Relevance**: *Provide system-level techno-economic analysis to support rollout of H2 and fuel cell vehicle technologies.*
- **Approach**: Analyze rollout strategies for fuel cell vehicles and H2 infrastructure in So. Cal. over next decade, to satisfy ZEV regulation. Station placement, number, size, type of stations, infrastructure economics.
- Technical Accomplishments and Progress: developed models, publications (journal papers, reports, presentations, spreadsheet model).
- Collaboration: Input/discussion w/ stakeholders (auto, energy, industrial gas, state agencies, national labs)
- **Proposed Future Research**: Examine the potential role of residential and commercial tri-generation systems (CHHP) in early infrastructure.

Technical Back-Up Slides

ECONOMIC ANALYSIS OF H₂ FCV ROLLOUT STRATEGIES

H2 INFRASTRUCTURE SHOULD OFFER

COVERAGE: enough stations, located to make fuel accessible to early FCVs

CAPACITY meet H2 demand as FCV fleet grows

- **CASH FLOW**: positive cash flow for individual station owners and networkwide supply within a few years
- **COMPETITIVENESS**: H2 fuel cost to consumers

<u>COORDINATE FCV PLACEMENT + H2 INFRASTRUCTURE BUILD-OUT,</u> <u>GEOGRAPHICALLY AND OVER TIME</u>

Finding: Cluster Strategy" co-locating early FCVs and H2 stations in a few cities (Santa Monica, Irvine, etc.) within a larger region (LA Basin) enables good fuel accessibility with a sparse network.

CLUSTER STRATEGY FORMS BASIS OF OUR ECONOMIC ANALYSIS.

Approach CLUSTER STRATEGY => GOOD FUELING CONVENIENCE W/ SPARSE EARLY NETWORK (<1% OF GASOLINE STATIONS) METRICS: Ave. Travel time (home -> station) **Diversion time** (time to nearest station for area-wide travel) Phase 1 Phase 2 Phase 3 Cluster Portable refueler **Fixed Station**

	636 FCVs	3442 FCVs	25,000 FCVs	
# Stations	8	20	42	
# clusters	4 (2 sta/cluster)	6 (3 sta/cluster)	12 (3 sta/cluster)	
# connect.sta	0	2	6	
Ave travel time	3.9 minutes	2.9 minutes	2.6 minutes	
Diversion time	5.6 minutes	4.5 minutes	3.6 minutes	23

8 Station Network

Progess/Accomplishments

4 Clusters – 2 Local Stations Per Cluster

