

Pathway Analysis: Projected Cost, Well-to-Wheels Energy Use and Emissions of Current Hydrogen Technologies

DOE Annual Merit Review Crystal City, VA Todd Ramsden & Mark Ruth May 14, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

<u>Timeline</u>

- Start: January 2012
- Finish: May 2013
- 100% Complete

Budget

- Total Funding: \$170K
 - 100% DOE funded
- FY12 Funding: \$110K
- FY13 Funding: \$60K

Barriers Addressed

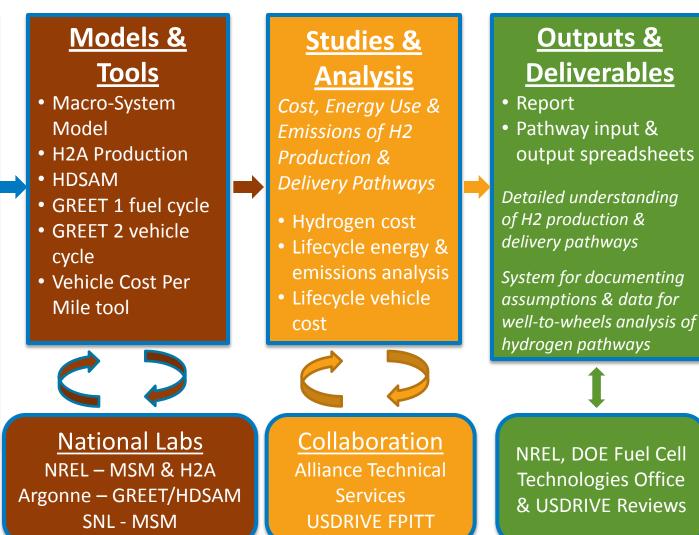
- Stove-piped/siloed analytical capability (B)
- Inconsistent data, assumptions & guidelines (C)
- Insufficient suite of models and tools (D)

Partners

- Alliance Technical Services
- U.S. DRIVE Fuel Pathways Integration Technical Team (FPITT)
- Sandia National Laboratory (SNL)

Project Objective

Hydrogen Pathways Analysis Project Objectives					
Detailed understanding of hydrogen production and delivery pathways	Conduct cost and life-cycle energy and emissions analyses of the complete supply chain of 10 hydrogen pathways using the Macro-System Model (MSM) to evaluate hydrogen cost, energy requirements & greenhouse gas (GHG) emissions				
Document and review data, assumptions, and models used for analysis	 Provide detailed reporting of assumptions & data used to analyze hydrogen (H₂) technologies, enabling consistent & transparent understanding of result Obtain industry review of input parameters and MSM & component models 				
Reporting	 Provide detailed reporting of hydrogen cost and capital costs of the complet hydrogen supply chain to support fuel cell electric vehicles (FCEVs) Report on upstream energy & feedstock usage and GHG emissions on a full life-cycle basis, including vehicle cycle and well-to-wheels fuel cycle Total FCEV cost of ownership reported including fuel and vehicle cycle 				
Relevance					
	 Evaluate potential of current technologies to meet \$2-4/kg cost target Validate MSM and component models through industry review Conduct lifecycle analyses of costs, energy & GHG emissions Assist DOE's Fuel Cell Technology Office with goal setting and R&D decisions by providing a detailed understanding of H₂ technologies using consistent basis Overcome stove-piped analysis and inconsistent data by providing a framework for modeling using consistent data and assumptions 				


Project Overview

Approach

Well-to-Wheels Energy & Emission Analysis of H₂ Production, Delivery & Dispensing Pathways

<u>Analysis</u> Framework

- Macro System Model
 Design parameters from the H₂ Delivery Scenario Analysis Model (HDSAM) & H₂ Prod. Analysis model (H2A)
- GREET (GHG, Regulated Emissions & Energy in Transportation) data
- Annual Energy Outlook (AEO) 2009 energy & feedstock data
- H₂ Analysis Resource Center (HyARC) data

Approach

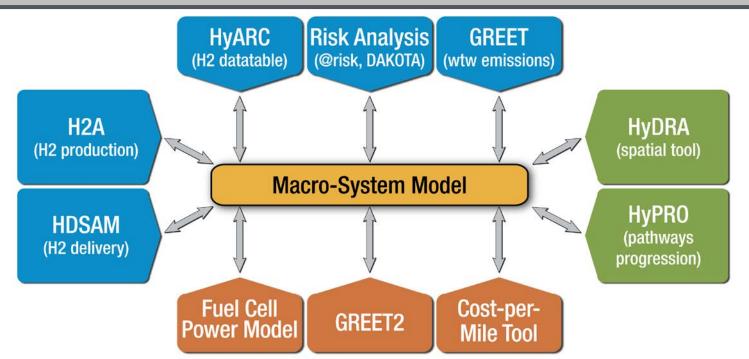
Key Input Parameters & Assumptions

The Macro-System Model (MSM) is being used to link H2A, HDSAM, GREET1, GREET2, and the Cost-Per-Mile tool and as the I/O interface

Modeling Assumptions

- Current technologies for H₂ production, delivery and dispensing
- Urban demand area,
 1.25 million population (Indianapolis)
- 15% FCEV penetration
- Station size of 1000 kg/d for delivered hydrogen
- Station size of 1330 kg/d for distributed hydrogen
- 62 mi. delivery distance

Analysis Assumptions


- 2015 start-up year
- 2007\$
- 40-year analysis period for central production
- 20-year analysis period for distributed production
- Feedstock & utility costs from the 2009 annual energy outlook (AEO) based on national averages

Vehicle Assumptions

- 2015 FCEV purchase
- 15,000 miles/yr VMT;
 160,000 mile lifetime
- Conventional materials (not light-weighted)
- Mid-size FCEV with 48 mpgge (miles per gallon gasoline equivalent) onroad fuel economy; sensitivity at 68 mpgge
- Vehicle cost with fiveyear ownership period

Pathway Analysis Conducted Using the MSM Approach

The MSM is a cross-cutting tool that acts as a central transfer station, linking other hydrogen models to provide consistency in multi-model simulations

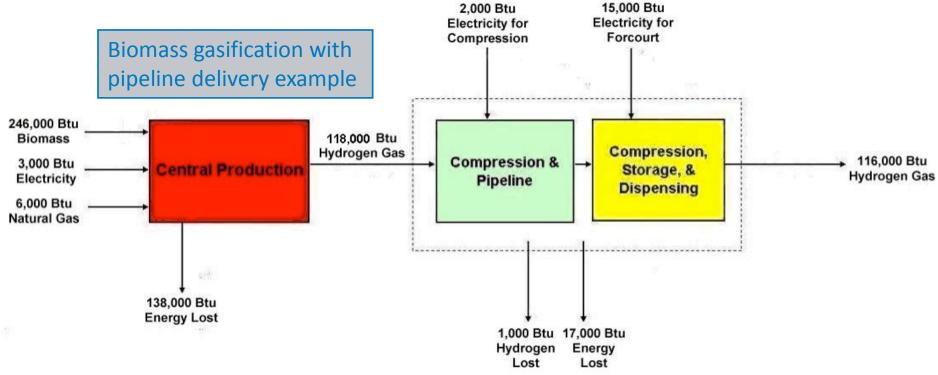
The MSM is well suited to the H₂ pathways analysis since it:

- Enables rapid cross-cutting analysis that utilizes and links other models
- Provides levelized cost at the pump for the entire pathway
- Outputs well to pump, pump to wheels and well-to-wheels (WTW) efficiencies, GHG emissions & energy use

NATIONAL RENEWABLE ENERGY LABORATORY

Pathways Analyzed in 2012/2013

10 current-technology production, delivery & dispensing pathways analyzed


	Production Feedstock / Technology	Delivery Mode	Dispensing Mode	Total Ownership Cost Results Reported
1	Natural Gas Reforming	Distributed Production	700 bar	Yes
2*	Ethanol Reforming	Distributed Production	700 bar	No
3	Electrolysis	Distributed Production	700 bar	No
4	Biomass Gasification	Pipeline	700 bar	No
5*	Biomass Gasification	Gas in Truck	700 bar	No
6	Biomass Gasification	Liquid in Truck	700 bar	No
7*	Biomass Gasification	Liquid in Truck	Cryo-compressed	No
8	Natural Gas Reforming	Pipeline	700 bar	No
9	Wind Electrolysis	Pipeline	700 bar	Yes
10	Coal w/ carbon capture	Pipeline	700 bar	No

* New technologies in this analysis

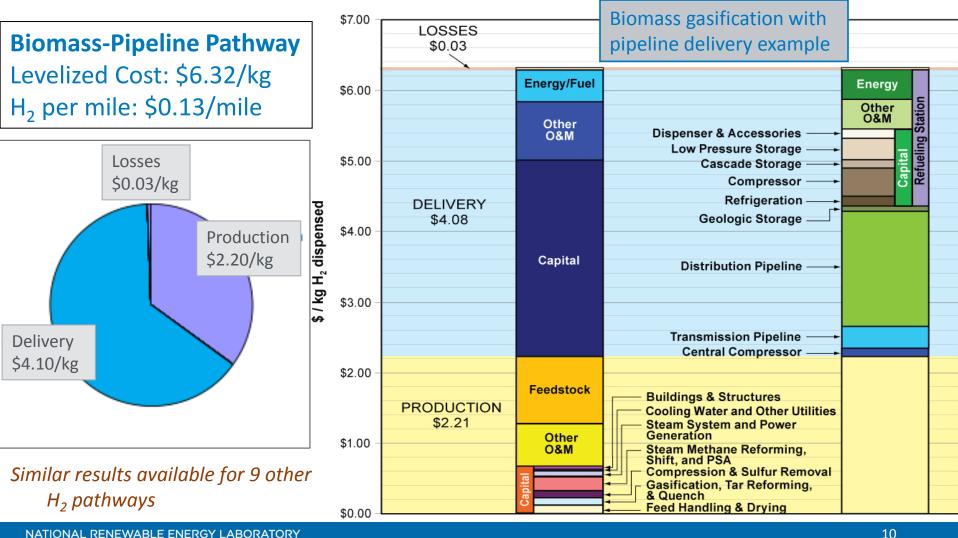
Approach

Pathway Composition – Example

H2 supply chain evaluated for WTW costs, energy use & GHG emissions

- Analyzed the complete hydrogen supply chain pathway, including production, delivery, and on-site compression, storage, and dispensing (CSD)
- Hydrogen production **includes upstream energy use** required for feedstock production, processing, and delivery
- Pathways analyzed for levelized cost, energy requirements & GHG emissions

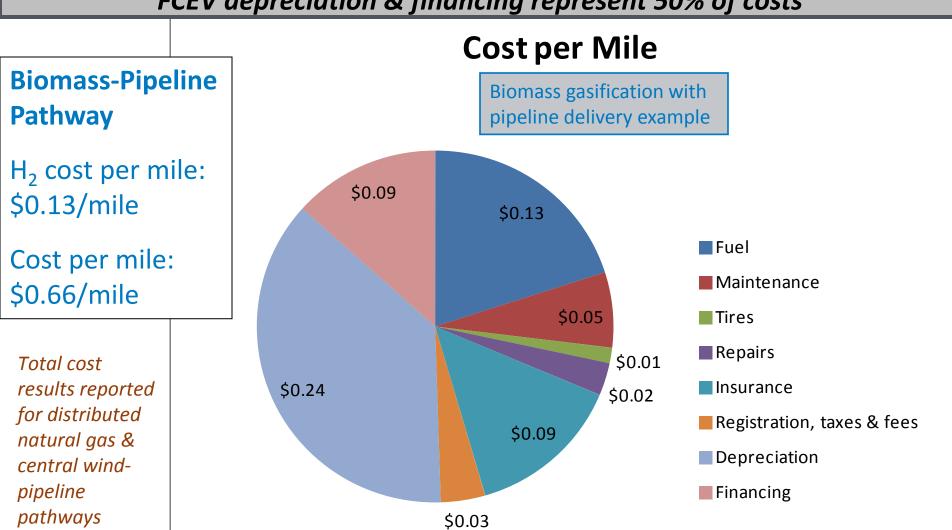
Approach


Documented Parameters, Data & Assumptions

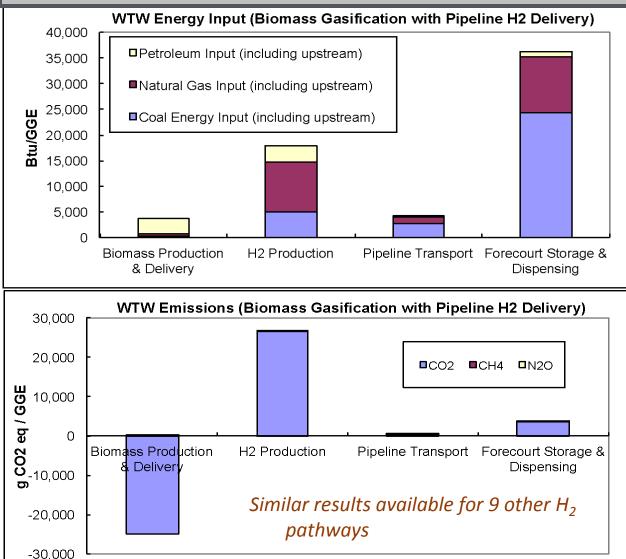
Detailed documentation & industry review of all modeling parameters

- Detailed documentation developed for every pathway, including in-depth report and multi-tab spreadsheets documenting each
 - Pathway
 All modeling parameters, assumptions, and input & output data captured for all pathways
 - Reporting provides consistent and transparent understanding of analysis
 & results
- Key assumptions, modeling parameters, and analysis inputs reviewed by industry partners through the U.S. DRIVE Fuel Pathways Integration Technical Team (FPITT)
- FPITT review included a review of the MSM and component H2A, HDSAM, and GREET models
 - Feedback on models provided to DOE and national lab model developers

Dispensed Hydrogen Cost Results


H₂ costs, including losses and production & delivery shares, shown for all pathways, with detailed breakdown of capital and operating cost elements

NATIONAL RENEWABLE ENERGY LABORATORY

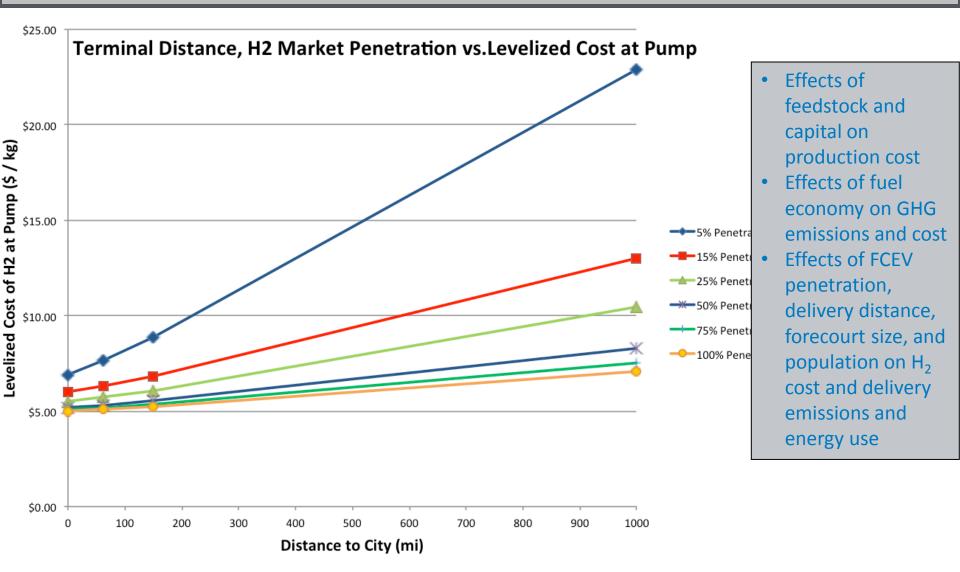

Total Cost Per Mile Results – Vehicle & Fuel

H₂ fuel costs represent 20% of ownership costs FCEV depreciation & financing represent 50% of costs

WTW Energy and Emission Results

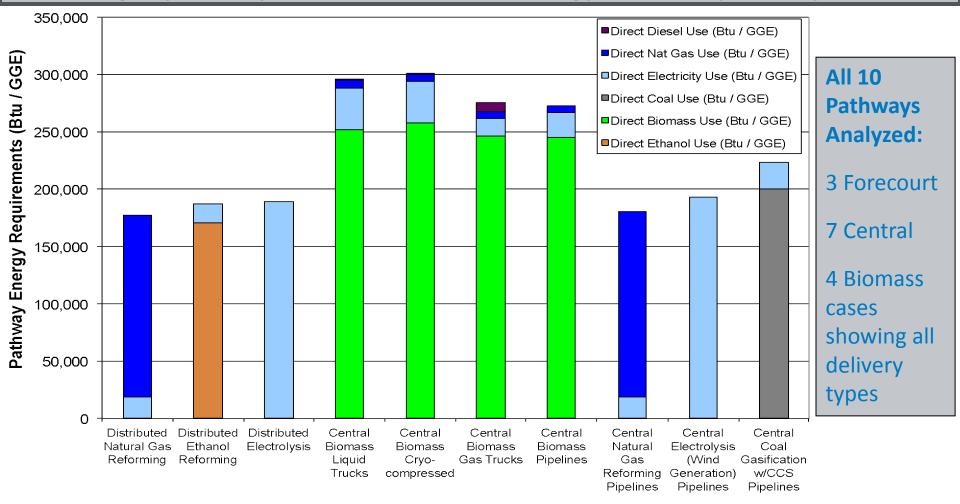
Compression, storage & dispensing accounts for most GHG emissions

WTW Energy


- Total energy req't calculated, only fossil energy shown
- Station requires significant energy due to 700 bar compression/cooling

WTW Emissions

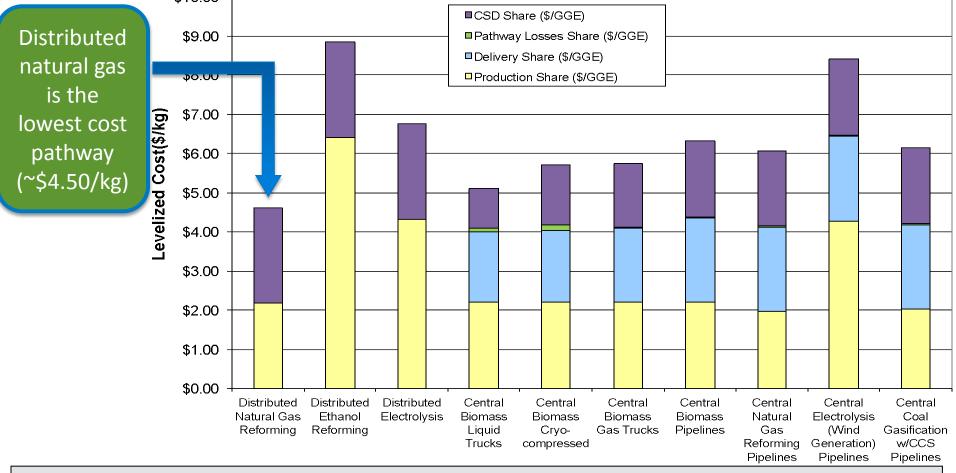
- Biomass production provides CO₂ "sink"
- CO₂ then released during H₂ production, leading to small net CO₂ emissions


Detailed Sensitivity Results

Detailed sensitivity results developed for all hydrogen pathway analyses

Comparative Results – Energy Use

Natural gas pathways use the least total energy, biomass pathways the most

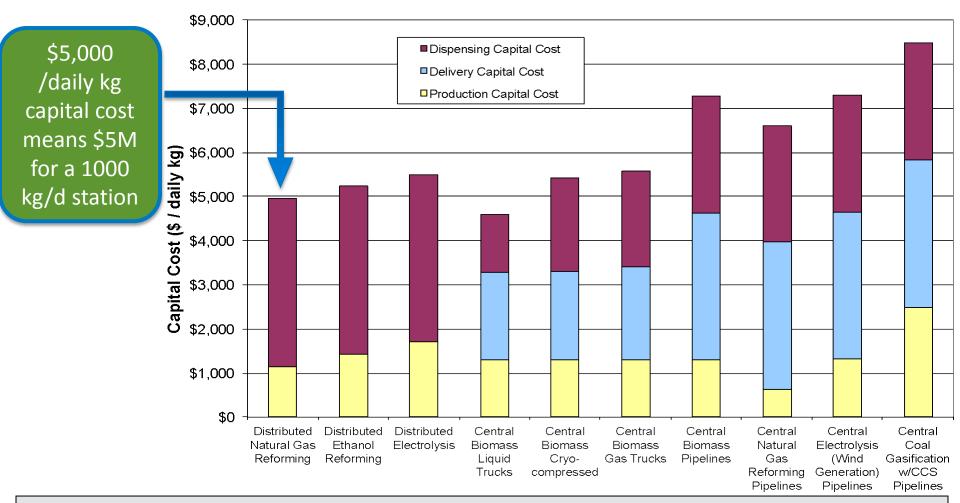


Stacked bar results show energy requirements for each pathway, including the contributions of input electricity, fossil energy, and renewable biomass and ethanol feedstocks.

NATIONAL RENEWABLE ENERGY LABORATORY

Comparative Results – H2 Cost Breakdown

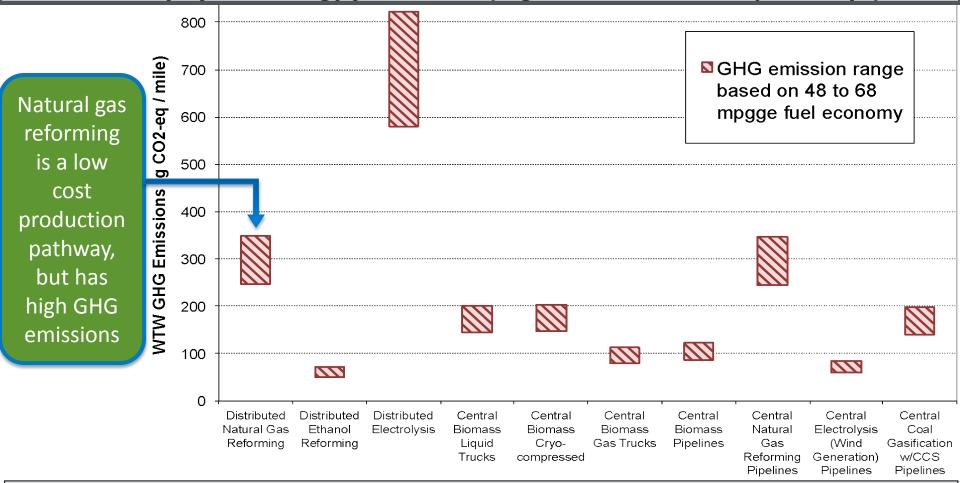
Central pathways generally have lower dispensed H_2 costs. Significant CSD costs show that CSD is a critical area for research to achieve H_2 cost targets.



• 4 pathways nearly meet production target of \$2/kg, though analysis is for mature market

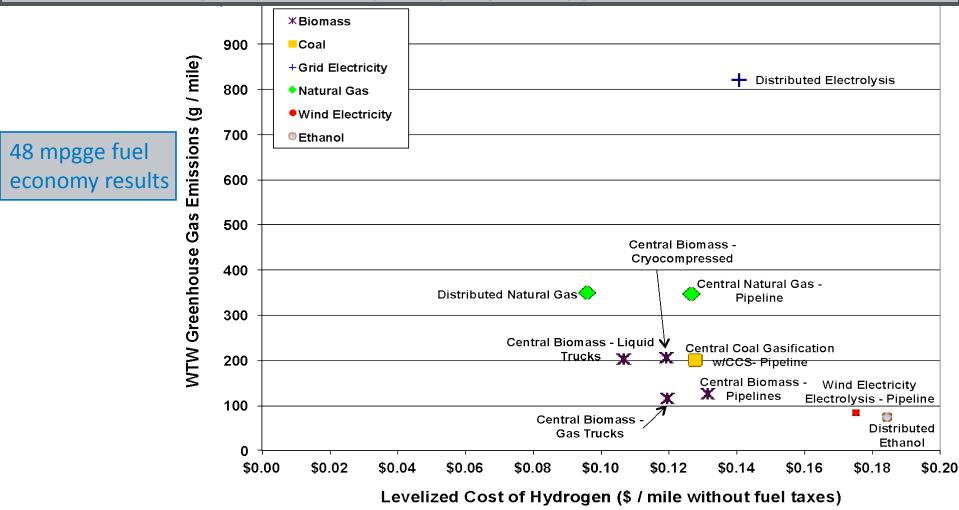
\$1.50-2.50/kg CSD costs (vs. \$2/kg target for H₂ delivery and CSD)

Comparative Results – Capital Cost


Total capital costs are an important hurdle reflecting the investment needed for a FCEV market, e.g. pipelines represent a significant up-front investment

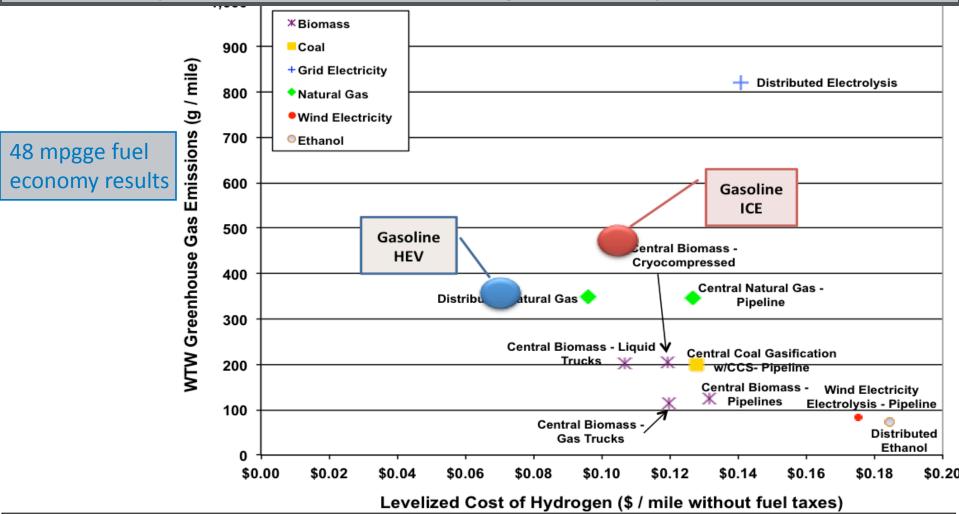
All pathways have significant delivery & CSD capital requirements: \$2B-4B per million FCEVs

Comparative Results – WTW GHG Emissions


Low energy use pathways not always low GHG pathways, due to the carbon intensity of the energy feedstocks (e.g., central biomass pathways)

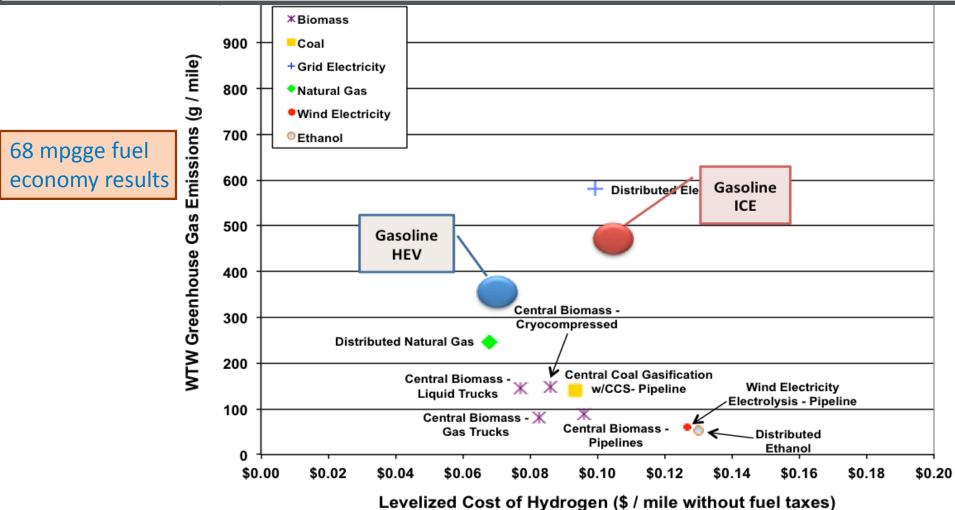
- Electrolysis emissions depend on grid mix (wind electricity vs U.S. mix)
- Liquid hydrogen delivery has higher GHG emissions due to liquifaction energy required

Comparative Results: GHG vs Fuel Cost


Results reflect the need for a portfolio approach – no clear winner

Biomass and wind electrolysis have low GHGs, but high cost; dist. NG low cost, but high GHG
Dist. electrolysis shows high GHG emissions using US grid mix, likely a regional solution only

Comparative Results: GHG vs Fuel Cost


Can compare results to conventional gasoline & hybrid electric vehicles

- FCEVs cannot currently match hybrid vehicles on per mile fuel cost
- FCEVs better than both conventional vehicles and hybrids on GHG emissions (one exception)

Comparative Results: GHG vs Fuel Cost

At higher 68 mpgge, FCEVs become comparable on cost to hybrid vehicles

FCEVs fueled with hydrogen from distributed NG stations better than hybrid on cost & GHGs
Most pathways yield significant GHG reductions for FCEVs compared to hybrids

Next Steps and Future Work

Near-Term: Publish WTW pathways analysis results for current technologies				
FY13:		Production Feedstock / Technology	Delivery Mode	Dispensing Mode
 Conduct companion WTW 	1	Natural Gas Reforming	Distributed Production	700 bar
, pathways analysis	2	Ethanol Reforming	Distributed Production	700 bar
for future	3	Grid Electrolysis	Distributed Production	700 bar
production,	4	Central Natural Gas Reforming	Pipeline	700 bar
delivery and dispensing	5	Central Natural Gas Reforming	Gas in Truck	700 bar
technologies	6	Central Natural Gas Reforming	Liquid in Truck	700 bar
expected to be	7	Central Natural Gas Reforming	Liquid in Truck	Cryo- compressed
commercially available in 2025	8	Central Wind Electrolysis	Pipeline	700 bar

Potential Future Work: Investigate advanced technology pathways

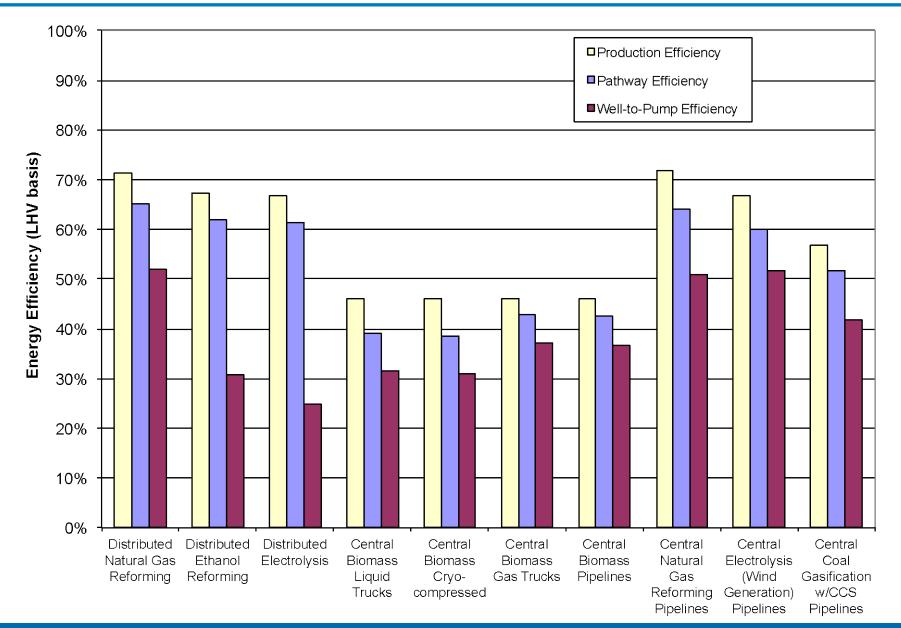
- Production: photo-electrochemical, photo-biological, solar thermo-chemical
- On-board storage technologies other than 700 bar compressed gas
- Novel delivery technologies (e.g., dual phase tankers, high pressure tube trailers)
- Investigate WTW energy & emissions of build-out scenarios, not mature market

Project Summary

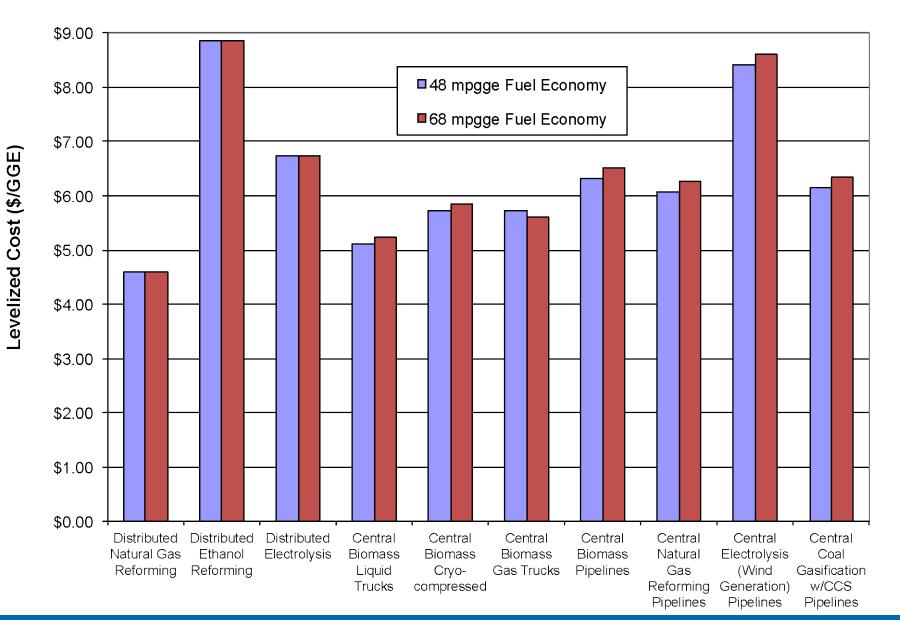
	Hydrogen Pathways Analysis Project Summary
Approach	Conduct well-to-wheels (WTW) analyses of the complete supply chain of 10 hydrogen pathways using the Macro-System Model (MSM) to evaluate hydrogen cost, energy input requirements & GHG emissions
Relevance	 Evaluate potential of current technologies to meet \$2-4/kg cost target Validate MSM and component models through industry review Conduct lifecycle costs, energy & emissions of H2 technologies
Technical Accomplishments	 Developed detailed documentation of all input & output parameters enabling consistent and transparent understanding of results and modeling Industry review of input parameters, MSM & component models Detailed hydrogen cost and capital costs developed for all H2 pathways Pathway upstream energy & feedstock usage and GHG emissions reported Total FCEV cost of ownership reported including fuel cycle and vehicle cycle
Collaborations	 Analysis support from Alliance Technical Services MSM development support from Sandia National Laboratory Industry review of modeling assumptions and input parameters through USDRIVE Fuel Pathways Integration Technical Team
Future Work	 Conduct companion WTW pathway analyses of future hydrogen technologies expected in 2025 Pathway analyses of advanced development hydrogen technologies

THANKS!

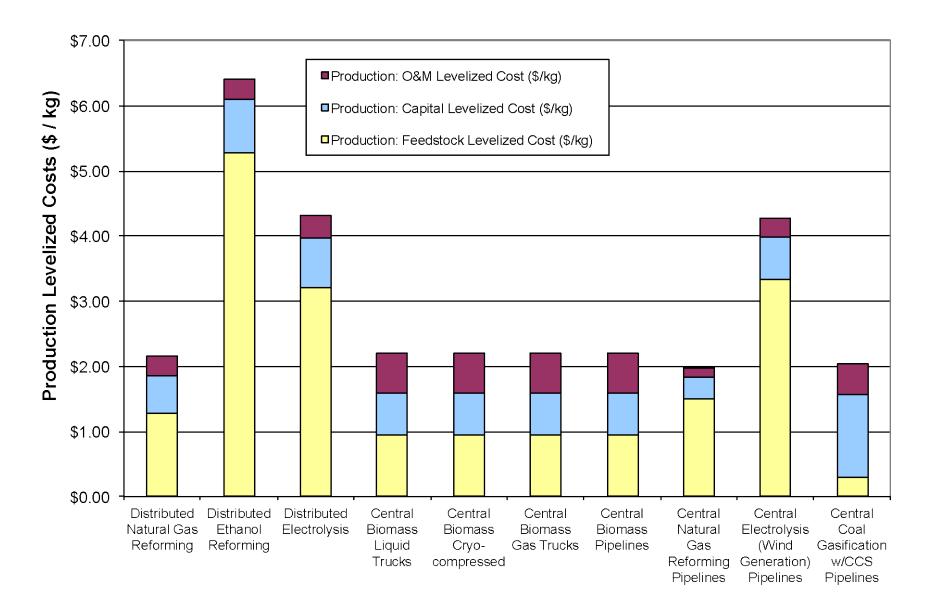
Todd Ramsden National Renewable Energy Lab todd.ramsden@nrel.gov 303-275-3704


BACK-UP SLIDES

Parameters, Data & Assumptions – Summary


	-	-			
In	puts	Modeling Parameters & Assur	nptions		Outputs
Energy Use for Farming Trees	234,964 Btu / dry ton	Biomass Production & Delivery		Biomass moisture content Woody biomass LH∨	25% 16,013,234 Btu / dry ton
		Fraction of Woody Biomass (Remaining is Herbaceous) LUC GHG changes Average dist from farm to H2 production	100% Og/dryton 40 miles	Biomass price at H2 production Biomass Share of Levelized Co:	\$75.02 2007 \$ / dry ton \$0.97 2007\$ / kg H2 dispensed
Coal Input from "Well" Natural Gas Input from "Well" Petroleum Input from "Well"	203 Btu / 116000Btu to Pump 623 Btu / 116000Btu to Pump 2,912 Btu / 116000Btu to Pump	· · · · · · · · · · · · · · · · · · ·		WTG CO2 Emissions WTG CH4 Emissions WTG N2O Emissions WTG GHG Emissions	-24,829 g CO2 eq./116000 Btu 13 g CO2 eq./116000 Btu 35 g CO2 eq./116000 Btu -24,782 g CO2 eq./116000 Btu
Biomass consumption Natural gas consumption Electricity consumption	13.5 kg (dry) / kg H2 produced 0.0059 MMBtu / kg H2 produced 0.98 kWh / kg H2 produced	Hydrogen Production		Hydrogen Output Pressure Hydrogen Outlet Quality	300 psi 99.9%
Process Water Consumption Cooling Water Consumption	1.32 gal / kg H2 produced 79.3 gal / kg H2 produced	Central plant design capacity Capacity factor Number of production facilities necessary	155,236 kg / day 90% 0.87	Total capital investment Levelized Cost of Capital Fixed O&M Costs	\$1,296 2007\$ / daily kg H2 (effective capacity) \$0.64 2007\$ / kg H2 dispensed \$0.23 2007\$ / kg H2 dispensed
Total Capital Investment	\$181,079,846 2007\$	Process energy efficiency Electricity Mix After-tax IRR	46.0% US Mix 10%	Variable O&M Costs Total Levelized Cost	\$0.40 2007\$ / kg H2 dispensed \$2.24 2007\$ / kg H2 dispensed
Coal Input from "Well" Natural Gas Input from "Well"	5,126 Btu / 116000Btu to Pump 9,498 Btu / 116000Btu to Pump	Assumed Plant Life	40	SMR C 02 Emissions SMR CH4 Emissions SMR N20 Emissions	26,511 g CO2 eq/ 116000 Btu 138 g CO2 eq/ 116000 Btu 43 g CO2 eq/ 116000 Btu
Petroleum Input from "Well"	3,390 Btu / 116000Btu to Pump			SMR GHG Emissions	26,692 g CO2 eq./ 116000 Btu
Electricity consumption for compressor	0.56 kWh / kg H2 dispensed			Total capital investment	\$3,339_2007\$ / daily kg dispensed
Electricity consumption for geo storage Total electricity consumption	0.01 kWh / kg H2 dispensed 0.57 kWh / kg H2 dispensed	Pipelines for Delivery		·	
Total Capital Investment	\$404,341,499 2007\$	Hydrogen Vehicle Penetration City hydrogen use Distance from City to Production Facility Geologic storage capacity 1	,247,364 people 15% 121,096 kg / day 62 miles ,324,720 kg H2	Levelized Cost of Capital Energ y & Fuel Other O&M Costs Levelized Cost of Delivery	\$1.71 2007\$/kg H2 dispensed \$0.04 2007\$/kg H2 dispensed \$0.40 2007\$/kg H2 dispensed \$2.15 2007\$/kg H2 dispensed
Coal Input from "Well" Natural Gas Input from "Well" Petroleum Input from "Well"	2,825 Btu / 116000Btu to Pump 1,253 Btu / 116000Btu to Pump 107 Btu / 116000Btu to Pump	Number of trunk pipelines Service-line length Number of service lines Hydrogen losses	3 1.5 miles/line 122 0.76%	Delivery CO2 Emissions Delivery CH4 Emissions Delivery N2O Emissions Delivery GHG Emissions	389 g CO2 eq/116000 Btu 24 g CO2 eq/116000 Btu 2 g CO2 eq/116000 Btu 415 g CO2 eq/116000 Btu
Electricity consumption	4.4 kWh / kg H2 dispensed	Forecourt Dispensing		Hydrogen outlet pressure Basis Hydrogen Quantity	12,688 psi 116,000 Btu (116,000 Btu/gal non-oxygenated conventional unleaded gasoline)
Total Capital Investment per Station Total Capital Investment	\$2,628,512_2007\$ / station \$320,678,503_2007\$ / all stations	Average Dispensing Rate per Station Number of Dispensing Stations Number of Compression Steps	1,000 kg/day 122 5	Total capital investment Levelized Cost of Capital Energy & Fuel	\$2,648 2007\$ / daily kg H2 (effective capacity) \$1.08 2007\$ / kg H2 dispensed \$0.41 2007\$ / kg H2 dispensed
Inlet pressure of hydrogen at stations	294 psi	Usable Low Pressure Storage per Station Usable Cascade Pressure Storage per Station	367 kg H2 130 kg H2 4397 % of design	Other O&M Costs Levelized Cost of Dispensing	\$0.43_2007\$ / kg H2 dispensed \$1.93_2007\$ / kg H2 dispensed
Coal Input from "Well" Natural Gas Input from "Well" Petroleum Input from "Well"	24,443 Btu / 116000Btu to Pump 10,837 Btu / 116000Btu to Pump 928 Btu / 116000Btu to Pump	Site storage Number of 2-hose Dispensers per Stati Hydrogen Losses	42% capacity 2 0.50%	CSD CO2 Emissions CSD CH4 Emissions CSD N2O Emissions CSD GHG Emissions	3,369 g CO2 eq/116000 Btu 208 g CO2 eq/116000 Btu 14 g CO2 eq/116000 Btu 3,591 g CO2 eq/116000 Btu
Vehicle Mass Fuel cell size Size of hybridization battery	3,020 lb 70 kW 30 kW	Vehicle Fuel Economy Vehicle Miles Traveled	48.0 mi/GGE 15,000 mi/yr	Cost Per Mile Fuel Share Maintenance, Tires, Repairs	\$0.66 2007\$/mi \$0.13 2007\$/mi \$0.07 2007\$/mi \$0.12 2007\$/mi
			13,000 milly yr	Insurance & Registration	\$0.12 2007\$7mi

NATIONAL RENEWABLE ENERGY LABORATORY


Comparative Results – Efficiency

Comparative Results – H2 Cost at 48 vs 68 mpgge

Comparative Results – H2 Production Cost

