

Global Hydrogen Resource Analysis (Hydrogen Implementing Agreement, Task 30A)

Thomas E. Drennen Sandia National Laboratories May 14, 2013

SAND Report: 2013-2496P

Project ID: AN038

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Energy Efficiency & Renewable Energy

Approach

Timeline

- Project start date: June 2010
- Project end date: December 2013
- Percent complete: 80%

Budget

- Total project funding
 - DOE share: \$233K
 - Contractor share: \$0K
- Funding received in FY12: \$50K
- Funding for FY13: \$183K

Barriers

- Barriers addressed
 - Costs of producing and delivering hydrogen.
 - Economic and investment hurdles
 - Understanding of hydrogen production options

Partners

- Susan Schoenung (Task 30 Cooperating Agent)
- Jochen Linssen (Task 30 Cooperating agent)
- Task 30 country experts
- Project lead: T. Drennen

Project Overview

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Approach

Relevance

 This project is a subtask of the larger IEA Hydrogen Implementing Agreement Task 30 (Global Hydrogen Systems Analysis). Task 30 overall goal:

"Perform comprehensive technical and market analysis of H_2 technologies and resources, supply and demand related to the projected use of H_2 in a low-carbon world."

- Task 30 Structure (subtask leaders)
 - **Subtask A** (T. Drennen, Sandia National Laboratories, US): Global Hydrogen Resources
 - Subtask B (J. Linssen, Research Center Juelich, Germany): Harmonized hydrogen technology database
 - Subtask C (K. Espegren, Institute for Energy Technology, Norway): Collaboration with IEA Analytics
 - Subtask D (M. Quemere, Électricité de France and Alain le Duigou, CEA, France): Hydrogen for Energy Storage
- Participants
 - France, Germany, Italy, Japan, Norway, Spain, Sweden, United Kingdom, United States
- Timing
 - June 2010 through December 2013
 - Expert meetings two times per year in person; regularly scheduled web meetings

3/132

Relevance

The specific objectives of Task 30 Subtask A are:

- 1. To analyze potential hydrogen production and distribution pathways for participating countries
- 2. To develop a user-friendly pathways analysis tool that allows users the ability to:
 - Understand the resource options and constraints to meeting future hydrogen demand for various fuel cell vehicle market shares; and to
 - Estimate potential petroleum savings and greenhouse gas emission reductions associated with various scenarios.
- 3. To collaborate with IEA (Paris) analysis processes and support the HIA Executive Committee in the liaison with IEA analysts

Approach

- Developed dynamic H₂ pathways analysis tool that:
- Projects H₂ demand by country specific fuel-cell vehicle vehicle scenarios
- Calculates least-cost pathways for H₂ supply by country, including feedstock, production, distribution (regional and long-distance), and carbon costs leveraging existing H2 production and distribution models (H2A, HDSAM, MSM)
- Estimates petroleum savings and transport-related GHG emission reductions
- Compares feedstock use for H₂ production through 2050 with 2010 primary energy consumption

• Data input

- Country-level data supplied by country experts (Task 30A)
- Where country-level data not available, U.S.-based analysis estimates used.
- Integration with Task 30B
 (Technology Database) and Task
 28 (Distribution) expected by
 year end

Approach

- Required data from participating countries includes:
 - Feedstock availability for H₂ production by type, cost, and quantity from 2010 to 2050
 - H₂ production technology assumptions (efficiencies, cost)
- Iterative process with countries to improve data consistency.
 - Example shown: Self-reported onshore wind costs by country available for H₂ production
 - Some countries (U.S. and Norway) provided supply curves for wind; many countries provided static estimates (not dependent on quantity demanded)

*1 GJ H₂ (LHV) = 8.33 kg H₂

Energy Efficiency & Renewable Energy

Accomplishments and Progress

Results summarized by region (Europe, Pacific, North America) and then participating country. Example shown here is for H₂ demand by European country and least-cost pathways.

Energy Efficiency & Renewable Energy

Accomplishments and Progress

Germany meets projected H_2 demand for 40% HFV 2050 market share with natural gas (SMR) and centralized coal w/o CCS. Increased natural gas demand a small fraction (6%) of current natural gas consumption.

*1 GJ H₂ (LHV) = 8.33 kg H₂

Accomplishments and Progress

With \$100 GHG tax, Germany continues to meet demand domestically but H_2 production shifts away from coal to biomass gasification.

*1 GJ H₂ (LHV) = 8.33 kg H₂

Energy Efficiency & Renewable Energy

Accomplishments and Progress

Country-specific pages show time-dependent hydrogen production and distribution costs, broken down by feedstock (red), conversion (green), distribution (blue), and carbon taxes (brown).

Feedstock Conversion Distribution GHG Tax

*1 GJ H_2 (LHV) = 8.33 kg H_2

Energy Efficiency & Renewable Energy

Accomplishments and Progress

U.S. broken down into 8 regions. For the base case, natural gas is the primary feedstock; GHG emissions from vehicles are decreased 42% from 2015 by 2050. Natural gas consumed for H_2 production for 128 million HFV is 20% of current U.S. consumption.

- Results presented at Task 30 workshop (March, 2013)
- Final iteration of comments & data with countries (March 2013)
- Replace all U.S.-supplied production and distribution costs with country or region specific data (June 2013)
 - Production costs: Task 30B (Harmonized hydrogen production database)
 - Delivery costs: Task 28 (Large Scale Hydrogen Delivery Infrastructure)
- Present draft report to DOE program office and Task 30 participants (October, 2013)
- Final report (December 2013)
- Share results and insights with IEA Hydrogen Analysts (Dec 2013)
- Prepare paper for journal publication (December 2013)

- I. Introduction (objectives, participants, process)
- II. Approach (assumptions, data sources, model description)
- III. Country-specific pages (current expectations/policies/goals for HFV)
- IV. Results (with and without interregional trading, with and without carbon taxes, specific country requirements)
- V. Sensitivity Analysis (vehicle mix, resource mandates/constraints, resource prices)
- VI. Lessons Learned (from the process, from the results)
- VII. Conclusions and Recommendations
- VIII. Appendix 1. Data Sets
- IX. Appendix 2. Results from incomplete data sets
- X. References
- XI. Acronyms, Conversion Factors

- Iterative data collection and pathway analysis a valuable exercise.
 - Several countries have revised data inputs after comparing inputs from other countries and results from analysis tool.
 - Process led to valuable discussion about role of off-peak electricity, integration of renewables, trade-offs between alternative uses of feedstocks, and role of imports of natural gas and other fossil fuels.
- Results show there are a large number of potential pathways for providing hydrogen to fuel significant HFV fleet: resource availability is not the limiting factor in hydrogen economy.
- Country experts agree that the tool facilitates discussion, providing insight about possible pathways, even if tool does not provide the definitive answers.
- Every country has identified multiple options for producing hydrogen domestically.

Collaborations

Subtask A Participants (each responsible for supplying country-level data and analysis)

- Tom Drennen (Subtask leader, Sandia National Laboratories, U.S.)
- Susan Schoenung (Task 30 Co-Cooperating Agent, Longitude 122 West Inc., U.S.)
- Jochen Linssen (Task 30 Co-Cooperating Agent, Subtask 30b leader, Forschungszentrum Juelich, Germany)
- Kari Espegren (Subtask 30c leader, Institute for Energy Technology, Norway)
- Clemens Trudewind (Forschungszentrum, Germany)
- Alain Le Duigou (CEA, France)
- Marie-Marguerite Quemere (EDF, France)
- Paul Lucchese (CEA, France)
- Maria del Pilar Argumosa (INTA, National Institute for Aerospace Technology, Spain)
- Javier Dufour (IMDEA, Madrid Institute for Advanced Studies, Spain)
- Diego Iribarren (IMDEA, Madrid Institute for Advanced Studies Spain)
- Isamu Yasuda (Tokyo Gas, Japan)
- Bengt Ridell (Grontmij AB, Sweden)
- Marco Brocco (ENEA, National Agency for New Technologies, Italy)
- Eugenio Caló (ENEA, National Agency for New Technologies, Italy)
- Rupert Gammon (Inst of Energy & Sustainable Development, De Montfort University, UK)

- 1. The Global Hydrogen Resource Analysis work is a subtask of the IEA Hydrogen Implementing Agreement Task 30 (Global Hydrogen Systems Analysis).
- 2. Main objective is to analyze potential hydrogen production and distribution pathways for participating countries.
- 3. Developed a user-friendly pathways tool to help participants understand resource options and constraints to meeting future hydrogen demand for various scenarios. Tool leverages several existing models.
- 4. Task 30 is scheduled to complete all tasks by December, 2013.
- 5. Results show there are a large number of potential pathways for providing hydrogen to fuel significant HFV fleet: resource availability is not the limiting factor for a hydrogen economy.
- 6. Will continue to inform IEA analysts about key findings.
- 7. Global pathways analysis tool adaptable for inclusion of other countries, pathways, and policy levers.

•	ANL	Argonne National Laboratory
•	CCS	Carbon Capture and Sequestration
•	CEA	Commissariat à l'énergie atomique et aux énergies alternatives
•	EIA	Energy Information Administration
•	GHG	Greenhouse Gas
•	GJ	Gigajoule
•	H2A	Hydrogen Analysis Project
•	HDSAM	H2A Delivery Scenario Analysis Model
•	HFV	Hydrogen Fuel Vehicle
•	HIA	Hydrogen Implementing Agreement
•	IEA	International Energy Agency
•	kWh	kilowatt hour
•	NREL	National Renewable Energy Laboratory
•	SMR	Steam Methane Reforming
•	SNL	Sandia National Laboratory