

U.S. DEPARTMENT OF

Fuel Cells -Session Introduction -

Dimitrios Papageorgopoulos

2013 Annual Merit Review and Peer Evaluation Meeting May 14, 2013

Goals and Objectives

GOAL: Develop and demonstrate fuel cell power system technologies for stationary, portable, and transportation applications

Objectives

- By 2017, a 60% peak-efficient, 5,000 hour durable, direct hydrogen fuel cell power system for transportation at a cost of \$30/kW.
- By 2020, distributed generation and micro-CHP fuel cell systems (5 kW) operating on natural gas or LPG that achieve 45% electrical efficiency and 60,000 hours durability at an equipment cost of \$1500/kW.
- By 2020, medium-scale CHP fuel cell systems (100 kW–3 MW) with 50% electrical efficiency, 90% CHP efficiency, and 80,000 hours durability at an installed cost of \$1,500/kW for operation on natural gas, and \$2,100/kW when configured for operation on biogas.
- By 2020, APU fuel cell systems (1–10 kW) with a specific power of 45 W/kg and a power density of 40W/L at a cost of \$1000/kW.
- Other specific objectives are in the Fuel Cell MYRD&D Plan.

Challenges & Strategy

U.S. DEPARTMENT OF

The Fuel Cells program supports research and development of fuel cells and fuel cell systems with a primary focus on reducing cost and improving durability. Efforts are balanced to achieve a comprehensive approach to fuel cells for near-, mid-, and longer-term applications.

R&D portfolio is technology-neutral and includes different types of fuel cells.

FOCUS AREAS

Stack Components Catalysts Electrolytes MEAs, Gas diffusion media, and Cells Seals, Bipolar plates, and Interconnects

> Operation and Performance Mass transport Durability Impurities

Systems and Balance of Plant (BOP) BOP components Fuel processors Stationary power Portable power APUs and Emerging markets

Fuel Cell R&D - Plans

Maintains critical fuel cell R&D to improve the durability, reduce cost, and improve the performance of fuel cell systems for stationary, transportation, and portable power. Key goal: Increase PEM fuel cell power output per gram of PGM catalyst from 2.8 kW/g (in 2008) to 8.0 kW/g by 2017.

FY 2013 Appropriation = \$42.4M FY 2014 Request = \$37.5M

*Subject to appropriations, project go/no go decisions and competitive selections. Exact amounts will be determined based on R&D progress in each area and the relative merit and applicability of projects competitively selected through planned funding opportunity announcements (FOAs).

EMPHASIS

- Focus on approaches that will increase activity and utilization of current PGM and PGM-alloy catalysts, as well as non-PGM catalyst approaches for long-term applications.
- Develop ion-exchange membrane electrolytes with enhanced performance and stability at reduced cost.
- Improve PEM-MEAs through integration of state-ofthe-art MEA components.
- Develop transport models and in-situ and ex-situ experiments to provide data for model validation.
- Identify degradation mechanisms and develop approaches to mitigate their effects.
- Maintain core activities on components, sub-systems and systems specifically tailored for stationary and portable power applications (e.g. SOFC).

Progress – Fuel Cell R&D

Projected highvolume cost of fuel cells has been reduced to \$47/kW (2012)*

- More than 35% reduction since 2008
- More than 80% reduction since 2002

*Based on projection to high-volume manufacturing (500,000 units/year). The projected cost status is based on an analysis of state-of-the-art components that have been developed and demonstrated through the DOE Program at the laboratory scale. Additional efforts would be needed for integration of components into a complete automotive system that meets durability requirements in real-world conditions.

Progress: Emerging Market Cost Analysis

Cost analyses in development for material handling applications

Progress: De-alloyed Catalysts

Low-PGM de-alloyed catalysts meet mass activity and durability targets

- Dealloying of PtNi₃ and PtCo₃ large-batch precursors yields catalysts that meet initial mass activity and mass activity after voltage cycling targets
- Catalysts based on PtNi₃ and PtCo₃ have also achieved 0.56 V @ 1.5 A/cm² milestone
- Further work needed to maintain performance at 1.5 A/cm² after voltage cycling

A. Kongkanand et al., GM

Progress: MEA Integration

Improved MEA and flowfield led to record low g_{PGM}/kW

Improvements in MEA and flowfield allowed reduction from 0.20 g_{PGM}/kW in 2012 to 0.16 g_{PGM}/kW in 2013

Status vs. targets:

- PGM loading: 0.16 g_{PGM}/kW (target: 0.125 g/kW)
- Mass activity: 0.40-0.48 A/mg (target: 0.44 A/mg)
- Durability w/ cycling: 66% MA loss (target: <40%)

U.S. DEPARTMENT OF

Progress: Mesostructured Thin Films

Surface modification and substrate evaporation of NSTF yields mesostructured surface with superior ORR activity

N. Markovic/V. Stamenkovic et al., ANL

Nature Materials 11 (2012) 1051

Atomic number (z)

Open-source FC-PEM performance and durability model developed to address micro-structural mitigation strategies for PEMFCs

Key milestones and future plans

Stacks and Components

• Projects addressed cost reduction and performance and durability enhancement of stack components including catalysts, membrane electrolytes, and MEAs .

Systems and Balance of Plant

 Maintained R&D on components and sub-systems, including fuel cell air management and humidifiers, and on systems specifically tailored for stationary power applications (e.g. SOFC).

Testing and Technical Assessments

 Analysis projects continued to provide cost annual estimates for transportation, stationary and emerging market applications.

Principal Participating Organizations

U.S. DEPARTMENT OF

Analysis and Testing

- Battelle
- LBNL
- Strategic Analysis
- LANL
- NREL
- ANL
- ORNL

Catalysts & Supports

- BNL
- 3M
- ANL
- LANL
- General Motors
- Northeastern University
- University of South Carolina
- Illinois Institute of Technology
- NREL

• Durability

- -Ballard
- -LANL
- -ANL
- -Nuvera Fuel Cells
- Impurities and Fuel Processors
- NREL
- University of Hawaii

Membranes

- Giner Electrochemical Systems
- FuelCell Energy
- Ion Power
- NREL

Balance of Plant

- Eaton Corporation
- Dynalene
- Tetramer
- MEA Integration
- 3M
- ANL

Portable Power

- Arkema Inc.
- LANL
- Stationary Power
 - Acumentrics
 - Innovatek
- Mass Transport
 - GM
 - Giner
 - LBNL
- Bipolar Plates
- TreadStone Technologies

For More Information

Fuel Cells Team

Dimitrios Papageorgopoulos

Fuel Cells Team Leader; USDRIVE Fuel Cell Tech Team Co-Chair 202-586-3388 dimitrios.papageorgopoulos@ee.doe.gov

Nancy Garland

Catalysts, Durability, Impurities, International 202-586-5673 nancy.garland@ee.doe.gov

Donna Lee Ho Cost Analysis, Durability, Membranes, APUs, Portable Power, Mass Transport 202-586-8000 donna.ho@ee.doe.gov

Greg Kleen Membranes, Mass Transport, MEAs, High-T Fuel Cells 720.356-1672 greg.kleen@go.doe.gov

Jason Marcinkoski Cost Analysis, Bipolar Plates, BOP, Automotive, Stationary Power 202-586-7466 jason.marcinkoski@ee.doe.gov

Acknowledgements:

Tom Benjamin, John Kopasz, and Walt Podolski (ANL); Cassidy Houchins (SRA International)

Kathi Epping Martin

Membranes, MEAs, Durability, Automotive, Fuel Processors, Stationary Power 202-586-7425 kathi.epping@ee.doe.gov

David Peterson

Stationary Power, High-T Fuel Cells, Catalysts, Durability, Fuel Processors, APUs 720-356-1747 david.peterson@go.doe.gov

Reginald Tyler

Cost Analysis, BOP, Durability, Impurities, Portable Power, Stationary Power 720-356-1805 reginald.tyler@go.doe.gov

Jacob Spendelow

Technical Advisor on Detail from LANL 202-586-4796 jacob.spendelow@ee.doe.gov

- This is a review, not a conference.
- Presentations will begin precisely at scheduled times.
- Talks will be 20 minutes and Q&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
- Please mute all cell phones and other portable devices.
- Photography and audio and video recording are not permitted.

- Deadline to submit your reviews is Friday, May 24th at 5:00 pm EDT.
- ORISE personnel are available on-site for assistance.
 - Reviewer Lab Hours:
 - Monday, 5:00 pm 8:00 pm (Gateway ONLY)
 - Tuesday Wednesday, 7:00 am 8:00 pm (Gateway)
 - Thursday, 7:00 am 6:00 pm (Gateway)
 - Tuesday Thursday, 7:00 am 6:00 pm (City)
 - Reviewer Lab Locations:
 - Crystal Gateway Hotel—*Rosslyn Room* (downstairs, on Lobby level)
 - Crystal City Hotel—*Roosevelt Boardroom* (next to Salon A)