Durable Catalysts for Fuel Cell Protection during Transient Conditions

Radoslav Atanasoski **3M**

DOE/3M Award DE-EE0000456

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review

Washington DC, May 16, 2013

Project ID: FC006

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Barriers

Electrode Performance: Catalyst durability under

- start-up & shut-down (SU/SD) estimated at ~ 4,000 events and
- cell reversal (CR)
 estimated at ~ 200 events

Timeline

- Project start date: August 1, 2009
- Project end date: December 31, 2013
- Percent complete: ~ 80% (03/2013)

Budget

- Total: \$5,782,165
- Contractor Share: \$1,156,433
- DOE Share: \$ 4,625,732 (includes \$ 400K to ORNL)

3M (Project lead) Partners/Collaborators

- AFCC (Subcontractor)
 - Independent evaluation, Short-stack testing, Ex-situ/in-situ characterization, Integration, Fundamental understanding
- Dalhousie University (Subcontractor)
 - High-throughput catalyst synthesis and basic characterization
- Oak Ridge National Lab (Subcontractor)
 - STEM Characterization
- Argonne National Lab (Collaborator)
 - Stability Testing, XAFS, Selective ORR Inhibitor

Funding Received in FY12: \$ 1,294,162 Planned Funding for FY13: \$ 950,000

Objectives and Relevance

<u>Objective</u>:

Develop catalysts that will enable PEM fuel cells systems to **weather the damaging conditions** in individual fuel cells during transient periods of **fuel starvation**, thus making it possible to satisfy **2015 DOE targets** for catalyst performance, **PGM loading**, and **durability**.

<u>Relevance</u>:

Fuel starvation could result in high positive voltages at the cathode during **start-up/shut-down** (SU/SD) or, at the anode, during **cell reversal** (CR). This project will develop a catalyst that **favors the oxidation of water over the dissolution of platinum and carbon at voltages encountered beyond the range of normal FC operation and beyond the thermodynamic stability of water (> 1.23 V).**

Approach:

Materials based, as such, protection is provided from within the MEA and therefore always "ON". Implementation:

Via two catalyst material concepts:

- 1. Catalysts with high oxygen evolution reaction (OER) activity
 - i. At the cathode for SU/SD
 - ii. At the anode for cell reversal
- 2. Anode catalysts with low oxygen reduction reaction (ORR) activity for SU/SD *Evaluation*:
- Lab-scale for material development
- Scale-up to full size CCMs (>300 cm²)
- Short stack integration and "real life" evaluation with AFCC test protocols

Approach/2013 Milestones

Task 1: OER	# of	PGM	End	ECSA	
Active Catalyst	Cycles	(mg/cm ²)	Voltage	Loss (%)	Status/Comments
SU/SD (Cathode)	(>)	(<)	(<)	(<)	
2011	5,000	0.095	1.60 V	12%	Achieved 09/2011
Go/No Go	5,000	0.090	1.60 V	10%	Achieved 01/2012; End Voltage: 1.48V
2013	5,000	0.088	1.45 V	10%	Achieved 11/2012; End Voltage: 1.44V
Cell Reversal (And	ode)				
2011	200	0.050	2.00 V		Achieved 09/2011
Go/No Go	200	0.045	1.80 V		Achieved 01/2012; End Voltage: 1.65V
2013	200	0.037	1.75 V		Achieved 11/2012;End Voltage: 1.62V
Task 2: Suppression of					
ORR (Anode)					
Go/No Go	A factor of 10 in the kinetic region				Achieved 01/2012; A factor > 100
2013	A factor > 100 in the kinetic region				Achieved 02/2013; A factor > 1,000
Task 3: Scale-up					
2012	Scale up to full size cells (> 300 cm^2)				Evaluated in 2012: 10 short stacks
2013	"Real I	ife" evalua	ition – AF		3 x 15-cells short stacks (03/2013)

Additional 2013 Tasks

SU/SD test procedure upon AFCC, Tech Team and Durability Work Group recommendations
 Fundamentals of Ru-Ir OER activity and stability

Accomplishments and Progress: 2012/2013

Cell Reversal: 2013 Milestones, HOR activity and ORR Suppression

Rulr loading 6 – 12 μg/cm² on 25 and 30 μg/cm² Pt/NSTF (3M Menomonie pilot plant, 300 ft lineal)

Both Pt/NSTF series with > 8 μ g/cm² Rulr fulfill 2013 milestone

The 25 μ g/cm² Pt/NSTF will impact the HOR

The 29 μ g/cm² Pt/NSTF with 8 μ g/cm² Rulr satisfies fully 2013 milestone

Modified 29 μ g/cm² Pt/NSTF with 8 μ g/cm² Rulr inhibits ORR over 3 orders of magnitude

29 Modif. 25 Pt + IrRu Loading, μ g/cm² 8 µg/cm² IrRu PtNi 0.70 Pt, $\mu g/cm^2$ 0.60 29 40 29 0.50 0.6 0.0 0.2 0.4**Current Density, A/cm²**

SU/SD Short stacks evaluation: 2013 Milestone OER catalyst

M 7

Short stacks evaluation

Milestone: 3 Stacks by 03/2013

Anodes:

- 1. Dispersed: 50 μg/cm² Pt (commercial catalyst; 3M produced)
- 2. NSTF: 50 μg/cm² Pt + 15 μg/cm² IrRu (NSTF base-line; historical)
- 3. NSTF: 29 μg/cm² Pt + 8 μg/cm² IrRu (NSTF 2013 milestone)

CCM made by 3M: SA > 300 cm²

- 3M coated dispersed cathode (0.4 mg/cm² Pt)
- 3M 12 μm reinforced, membrane, 725 EW

SU/SD test procedure via Gas Switching between Hydrogen and AIR

Baseline: Without Gas Switching

as shown below

Reversal durability after **400** mimicked **'life** cycles' including Gas Switching steps

Modified OER catalyst shows improved durability by a factor > 5

Gas Switching impacts significantly the inherent OER activity of IrRu. Modification of the OER catalyst for improved durability is underway.

Durable Catalysts for Transient Conditions

DOE AMR – Washington DC, May 16, 2013

OER with Membrane Additive

"Real Life" membranes contain additives

Durable Catalysts for Transient Conditions

DOE AMR - Washington DC, May 16, 2013

OEM Evaluation

OEM "A" Test Results of 3M OER Modified Pt/NSTF Anode Catalyst

OEM Conclusion: **OER catalyst** presence on NSTF is **necessary** for H₂ starved operation

Durable Catalysts for Transient Conditions

DOE AMR - Washington DC, May 16, 2013

Su/Sd: The Impact of the Lower and the Upper Voltage Limit

- Up to **1.5 V** the ECSA retention is as expected (Test procedure on slide # 25).
- Excursions to 650 mV at every cycle shows a much larger surface area loss than with any of the previous test procedures.
- 100 mV increase in the upper voltage limit, to 1.6 V, results in 26% additional Pt surface area loss.
- By the end of the 5,000 cycles, the OER activities of 1 μg/cm² have fallen into the range of Pt samples. However, 10 μg/cm² has more than enough OER catalyst to still protect Pt.

Pt dissolution is strongly determined by

- the frequency of the lower voltage limit
- the upper voltage limits

The question: Why Pt exposed to the same potential regime dissolves less when OER catalyst is present?

12

3M

Fundamentals: Effect of Cell Reversal on OER NSTF catalysts.

Fundamentals: The impact of individual OER components

Ru; Ru +lr; Pt + Ru; and Pt+Ru+lr <u>Compositions: Perylene Red/Pt/Ru/Ir</u> Ru: 20 μ g/cm² in all Ru + Ir: 5 μ g/cm² Ir Pt + Ru: 5 μ g/cm² Pt Pt + Ru + Ir: 5 μ g/cm² Pt; 5 μ g/cm² Ir (CVs not presented) Pt + Ru: 10 μ g/cm² Pt Pt + Ru + Ir: 10 μ g/cm² Pt; 5 μ g/cm² Ir <u>Testing:</u> Two consecutive scans CV s @ 2 mV/s 1st scan: solid lines

OER activity and stability of

2nd scan: dotted lines

<u>OER activity:</u> (assessed at 1.39 V, before significant Ru dissolution occurs)

Ru has the best activity and the worst stability

Ir retains most of Ru activity and provides some stability

Pt decreases Ru activity without providing sufficient stability

Pt + Ir decrease the activity further but provide much better stability as shown at higher potentials

Fundamentals: Ru disposition on bare perylene

Imaging Ru and Ru + Ir OER Layers on Perylene

Ru: $1 \mu g/cm^2$

Ru: $1 \mu g/cm^2 + 5 \mu g/cm^2 Ir$

Ru particles covered by Ir

Durable Catalysts for Transient Conditions

DOE AMR – Washington DC, May 16, 2013

3M 16

EELS Mapping of Ru and Ru+Ir OER Layers on Perylene

- Electron energy loss spectroscopy (EELS) can be used to detect low loadings of Ru.
- Peak overlap between C and Ru does complicate analysis.
- Peaks in EELS near edge fine structure appear in Ru edge with the addition of Ir.
- We will try to understand the origin of these peaks and correlate to improved stability.

C 1s-Ru 3d XPS Core Level Spectra

1 μg/cm² Ru and 1 μg Ru + 5 μg/cm² Ir plotted together clearly show:

- (a) Without Ir there is a significant shift of Ru $3d_{5/2}$ -Ru $3d_{3/2}$ doublet to high BE of ~ 282 eV which **indicates Ru interaction with perylene red**
- (b) Addition of Ir shifts the Ru 3d_{5/2}-Ru 3d_{3/2} doublet to lower BE, characteristic of Ru metallic state
- (c) The shift of Ru $3d_{5/2}$ peak is obvious
- (d) The shift in Ru 3d_{3/2} peak cannot be seen clearly without curve fitting analysis because of its overlapping with aromatic/aliphatic C 1s peak
- (e) The shift of Ru 3d_{3/2} peak can only be seen via a very small shift of the most intense peak of overlapped C-C and Ru 3d_{3/2}
- (f) The very visible carbonyl carbon peak of perylene red is convenient for a calibration because it shows that the Ru shift is real and not some artifact of charging
- (g) The following slides show that the shift of Ru 3d doublet by Ir addition decreases proportionally with increased Ru loading

Durable Catalysts for Transient Conditions

Collaboration Partners

• AFCC (Subcontractor):

- Independent evaluation, Short-stack testing, Ex-situ/in-situ characterization, Component integration, Fundamental understanding
- Dalhousie University (Subcontractor; ended 12/31/2012): High-throughput catalyst synthesis and basic characterization
 - Fully integrated since its inception, during the proposal phase
 - It runs as one single program
 - Results reviewed during weekly scheduled teleconferences and many more unscheduled contacts between participants.
- Oak Ridge National Lab (Subcontractor): STEM Characterization
 - Fully integrated, provides invaluable feedback and insight into the OER catalyst
 - STEM and EDS analysis fully synchronized with catalyst development
- Argonne National Lab (Collaborator; no activity during the final year):
 - EXAFS characterization and OER catalyst stability
 - ORR suppression on anode

Future Work

The remainder of the final year will be focused on 3 major areas:

 OER-Pt NSTF catalysts evaluation readiness for "real life" automotive applications

Continue the short stack evaluation with AFCC with new/modified OER catalysts

Assess the boundaries of the OER – Pt/NSTF application

Assess the lowest Pt loading limit in respect to performance

R&D of the OER catalyst with respect to durability in 'real life'

Fundamental materials studies to further the understanding and the paths to improvement of the stability of the OER-Pt NSTF catalysts

• Fundamental engineering studies of the OER-Pt NSTF catalysts

Understand the impact of processing, integration and interaction with other MEA components

Summary

The final year project milestones have been achieved:

> 200 cycles of 200 mA/cm² for cell reversal with 0.037 mg/cm² total PGM on the anode with 1.7 V upper limit

5,000 startup cycles with upper voltage limit of 1.45 V and with 0.088 mg/cm² total PGM on the cathode with ECSA loss of < 10%;</p>

Reduced ORR current on the anode by a factor > 1000;

Fundamentals of the high specific and mass OER activity of Rulr-Pt/NSTF were explored and potential explanations elaborated;

Full size MEAs for three short stacks were produced at 3M and were evaluated by AFCC;

FC performance of low loading Pt on OER-able anode was the same as on higher Pt loading anodes, for both NSTF and dispersed based catalysts;

Shortcomings identified during the stack testing were addressed and preliminary solutions were successfully assessed;

Second OEM tested and confirmed the 3M lab results.

Technical Back-Up Slides

SU/SD and OER Catalysts Development Fundamentals

Durable Catalysts for Transient Conditions

3M 24

Task 1: SU/SD Generic Electrochemical Equivalent Test

Note: Current responses, mostly reversible, depend dramatically on OER catalyst state:

Current immediately after the 650 mV step is the highest due to the contribution of the PtOx formation and the OER component regeneration.

```
Add Insert 1.6V and 0.65 V data
```

• 100 mV/s ramp: mimics H₂ front.

• **1.6 V upper limit or to 5 mC/cm²**: mimics the equivalent amount of O₂ to be reacted off for H₂/H⁺ electrode potential to be established.

• 650 mV every 10 cycles/pulses: mimics cell voltage during normal operation.

• ECSA every 1,000 cycles

Durability criteria:
 > 5,000 cycles; > 5 mC/cm²; < 1.6 V ; ∆ ECSA < 10%

Cell Reversal: 2011 and Go/No Go Milestones

23 samples; 4 + replicates per Rulr loading 1 – 10 µg/cm² on 40 µg/cm² Pt/NSTF (Fabricated at the **3M** Menomonie pilot plant, 200 ft lineal)

Test protocol:

- 1. MEA Conditioning
- 2. ECSA
- 3. 20 pulses* @ 12 mA/cm²; 60 s
- 4. 20 pulses @ 44 mA/cm²; 30 s
- 5. ECSA

200 x 200 mA/cm²

2011: Ecell < 2.0 V; 0.050 mg/cm² PGM G/NG: Ecell < 1.8 V; 0.045 mg/cm² PGM

9. ECSA

Additional durability:

- **Continuous polarization** @ 200 mA/cm²; 2 V upper limit
- * All pulses (cycles) square wave followed by -1 mA/cm^2 for 1 min.

FC conditions:

70/80/80 °C; 1000 sccm A: N₂; C: H₂

00 Pulse Num

Number of cycles to **upper limit** of **2 V** and **1.8 V**

All 6 samples tested w/ 10 μ g OER have passed 200 cycles with a lot of "room" to spare. These samples fulfilled Year 2 milestone.

To strictly fulfill the PGM loading requirement NOMINALLY 8 μg/cm² OER on 37 μg/cm² Pt/NSTF was fabricated. These samples fulfilled the Go/NG milestone!

Cell Reversal at high currents

Pt_{0.8}Ru_{0.2} Pt-XPS data

