Project FC009

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports

Radoslav Adzic Brookhaven National Laboratory

Co-Pls: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki Brookhaven National Laboratory Yang Shao-Horn, Massachusetts Institute of Technology Rachel O'Malley, Johnson Matthey Fuel Cells

BNL team: Stoyan Bliznakov, David Buceta, Kurian Kuttiyiel, Yu Zhang, Guangyu Chen

2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review Meeting May 13-17, 2013

a passion for discovery

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: July 2009 Project end date: September 2013 Percent complete: Approx. 80%

Budget in \$K

3,594 Total project funding: Funding in FY12: 975 Planned Funding in FY 13: 625

Barriers

Performance:

Catalyst activity; $\geq 0.44 \text{ A/mg}_{PGM}$ Cost: PGM loading; $\leq 0.3 \text{ mg PGM / cm}^2$ **Durability**: < 40% loss in activity under potential cycling

Partners

Massachusetts Institute of Technology (MIT) Johnson Matthey Fuel Cells (JMFC)

Collaborations

UTC Power, Toyota M. C., U. Wisconsin, U. Stony Brook, 3M Corporation, GM Corporation, **CFN-BNL**

Technology transfer

Four patents on Pt ML electrocatalysts licensed to N.E. ChemCat Co. CRADA with Toyota M.C.

Relevance

Objectives:

General:

- 1. Synthesizing high performance Pt monolayer (ML) on stable, inexpensive metal or alloy nanostructures fuel cell electrocatalysts for the oxygen reduction reaction (ORR);
 - 2. Increasing activity and stability of Pt monolayer shell and stability of supporting cores, while reducing noble metal contents.

Specific (recent):

3. Scale-up of syntheses to produce multi-gram quantities of three catalysts:
3.1 Pt ML on Pd hollow NPs using a microemulsion or similar method
3.2 Pt ML on ultra thin Pd alloy nanowires
3.3 Pt ML on WNi and Pd₉Au₁ alloys obtained by electrodeposition
3.3.1 Delivering a 450 cm² MEA for testing at UTC.
3.3.2 Achieving a 100% utilization of Pt

Approach

Research Strategies

- 1. Improving the Pt monolayer properties using core-shell interaction:
 - 1.1. Reducing oxygen binding energy by:
 - Compression of Pt ML atoms induced by core, hollow core, subsurface ML
 - Electronic effects of cores
 - Decreasing the number of low-coordination atoms
 - Increasing stability of cores with specific structure, composition and shape
- 2. Electrodeposition of cores to optimize their shapes and composition and maximize catalyst utilization
 - Metal and alloy- nanoparticles, nanorods, nanowires
- 3. Refractory metal alloys used as cores to reduce PGM content
 - Co-deposition of W and Ni cores

J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W.P. Zhou, R.R. Adzic, *J. Am. Chem. Soc, 131 (2009) 17298, JACS Select #8*L. Yang, M. Vukmirovic, D. Su, K. Sasaki, J. A. Herron, M. Mavrikakis, S. Liao, R.R. Adzic, *J. Phys. Chem.,* 2013, 117, 1748-1753.

Behavior of commercial Pt_{ML}/Pd/C catalyst (N.E. ChemCat) as a baseline

at 0.9 V PGM Mass Activity: 0.46 A/mg; Pt Mass Activity: 0.95 A/mg_{Pt} Cathode loading PGM 136 µg/cm²

No change in performance over 6 months at OCP and 4 current densities 0.1 mg/cm² PGM (Data, Hiroshi Igarashi, NECC)

Synthesis of hollow Pd nanoparticles and Pt_{ML}/Pd_{hollow}/C catalyst

MEA test of Pt_{ML}/ Pd_{hollow}/C nanoparticles

Cathode PGM loading: 70 µg/cm²; Anode: 50 µg/cm² Pt ; Electrode area: 5 cm²

MEA tests of Pt_{ML}/Pd/C catalyst synthesized in ethanol

No change in polarization curves with O_2 or AIR in 2000 potential cycles.

representative Pd@Pt

core-shell nanoparticle

New scale – up syntheses of Pt hollow nanoparticles - maximizing Pt hollow

Hollow Pt prepared with Cu as a sacrificial metal

MA= 0.32 A/mg SA = 2.06 mA/cm²

The procedure allows for maximizing Pt hollow, i.e. making the thinnest Pt shell. Less than 30µg_{Pt}/cm²

The stability of this type of Pt hollow electrocatalyst is high; no change can be observed after 10,000 potential cycles.

MEA test of Pt_{ML} on ultrathin bimetallic PdAu nanowires

Nanowires Pt_{ML}/Pd

Pd and Au precursors are combined with octadecylamine and a phase transfer catalyst catalyst dodecyltrimethyl ammonium bromide (DTAB) is used to allow for cosolubilization of NaBH₄ into both the aqueous and organic phases.

Brookhaven Science Associates

Electrodeposition of cores

Further improvement of Pt_{ML} electrocatalysts

- □ Alloy cores and cores obtained by co-deposition of refractory and alloying metal, e.g. W-Ni
- □ Scale-up in electrodeposition at electrodes from 5 and 25 to 450 cm²
- **100% utilization of Pt in Pt_{ML} electrodeposited catalysts**

Total utilization of Pt in MEA

Standard catalysts Pt/C 4-5 nm = 15-20%

Pt ML standard MEA prep Pt_{ML}/Pd/C 4-5 nm = 50%

Pt ML on electrodeposited core Pt_{ML}/Pd_{electrodeposited}/C = 100%

100% utilization of Pt

Avoiding loss of Pt atoms in contact with carbon that are not accessible to protons

All Pt atoms are accessible for electrons and protons

Scale-up in electrodeposition of catalysts directly on GDLs

Electrochemical cells for processing of electrodes with area of 5, 25 and 450 cm²

Advantages of electrodeposition:

- All particles accessible to electrons and protons
- Short production time per MEA "Green" properties
- No free nanoparticle generation No ink preparation and placing on electrode

Potential pulse deposition protocol tailored to optimize the deposition process for GDL

MEA test of Pt_{ML}/Pd₉Au₁/GDL at 80°C and 60°C

Activities as a function of the electrode size

5 cm²

25 cm²

450 cm²

activity increased. PGM ~ 70 µg/cm²

 $PGM = 50 \mu a/cm^2$

Similar activity for 5 and 25 cm ² electrodes.
Lower activity for 450 cm ² electrode is caused by the
ambient pressure applied and low OCP indicating
inadequate state of the surface. Both can be corrected.

Electrode-BNL, ; MEA, measurements – UTC Power

	SA, mA/cm ²	Pt MA, A/mg _{Pt}	PGM activity, A/mg _{PGM}
Pt _{ML} PdAu/GDL 5 cm²(at 0.9V)	0.4	1.2	0.5
Pt _{ML} PdAu/GDL 25 cm² (at 0.9V)	0.2	1.1	0.4
Pt _{ML} PdAu/GDL 450 cm ² (at 0.75V)	-	1	0.4

Co-deposition of W – Ni as a core of Pt_{ML}/Pd/WNi/GDL – MEA test

MEA 25 cm² PGM: 50 μ g/cm² MA_{Pt} = 1.1 A/mg ; MA_{PGM} = 0.42 A/mg

Performance increased after 5000 (5 cm²) and 15,000 (25 cm²) potential cycles from 0.6 to 1.0 V, 50 mV/s

Comparison of MEA activities of the catalysts from scale-up syntheses

	Specific activity, mA/cm² (at 0.9V)	Pt mass activity, A/mg _{Pt} (at 0.9V)	PGM mass activity, A/mg _{PGM} (at 0.9V)
Pt _{ML} PdAu 5 cm²	0.4	1.2	0.5
Pt _{ML} Pd _{hollow} 5 cm ²	1.4	1.2	0.5
Pt _{ML} Pd _{nanowires} 5 cm ²	0.7	1.7	0.1
Pt _{ML} Pd _{nanowires} 5 cm ² , electrodeposition	0.2	1.2	0.5
Pt _{ML} PdWNi 5 cm²	0.3	1.3	0.5
Pt _{ML} /Pd Ethanol medium	1.3	0.9	0.4
Pt/C Commercial	0.15-0.2	0.1-0.12	0.1-0.12

All above Pt_{ML} catalysts have the PGM activity 3-5 times higher than commercial catalysts, while their Pt mass activity is one order of magnitude higher. The only exception is lower PGM activity of Pt_{ML}/Pd NW caused by the mass of Pd wire.

New tests of Pt_{ML}/Pd/C at 3M

Potential cycling 0.6 to 1.2V, 20 mV/s;70C, 100% RH New ink formulatic.. Electrode size 50cm² Loadings from 0.06 to 0.10 mg Pt/cm²

MA doubles; SA 3-4X improvement Baselines = 0.15 A/mg Pt; = 150 μ A/cm² Core shell reaches 650 μ A/cm² Self-healing mechanism supported by these data. Significant surface area loss with cycling, slower for baseline. <u>Significant</u> performance gains after 10 cycles

3M recommendations / conclusions

Mass transport region looks very good; High current capability at low loadings.

Add Au to slow or stop metal dissolution

The 3M carbon might improve mass and specific activity Continue testing; making CCMs

Andrew Haug, Daniel Peppin, Radoslav Atanasoski

Thin Film Pt on Fibrous Supports

Atomic Layer Deposition (ALD) to create continuous Pt thin films on a range of nano-fibrous supports Preparation and scale-up of electro-spun carbonisable and oxide fibrous supports

Investigation of materials for interface layers that help Pt 'wetting' of the fibrous substrates.

Johnson Matthey Fuel Cells

Collaborations

Partners:

1. Massachusetts Institute of Technology (MIT) (University): Yang Shao-Horn, Co-PI

2. Johnson Matthey Fuel Cells (JMFC) (Industry) Rachel O'Malley Co-PI

3. UTC Power (Industry) Minhua Shao, Lesia Protsailo

Collaboration on MEA making, stack building and testing. This collaboration ended in Feb. 2013 due to the organizational changes in the company.

Technology Transfer

4. N.E. Chemcat Co. (Industry) Catalysts synthesis. Licensing agreement for four patents.

Pt_{ML}/Pd/C catalyst is available from NE ChemCat Co.

Other Collaborations

6. Toyota Motor Company (Industry) Toshihiko Yoshida MEA test, catalysts scale-up

7. U. Wisconsin (University) Manos Mavrikakis, collaboration on theoretical calculations-

8. Center for Functional Nanomaterials, BNL Ping Liu, DFT calculations; Eli Sutter and Yimei Zhu, TEM, STEM

9. 3M Corporation (Industry) Radoslav Atanasoski, Andrew Haug, Daniel Peppin

10. GM (Industry) Anu Kongkanand

Proposed Future Work

FY13

- 1. Optimize the synthesis of the Pt_{ML}/Pd_{hollow}/C catalyst and MEA fabrication and tests (BNL, JMFC).
- 2. Optimize electrodeposition of the Pt_{ML}/Pd/WNi catalyst, fabrication of 450 cm² electrodes and tests of 25 cm² segments of this electrode (BNL).
- **3.** Optimize the synthesis of Pt_{ML}/Pd/C in ethanol and MEA tests (BNL and 3M).
- 4. For stack testing the agreement with GM is proposed. GM is conducting the tests of $Pt_{ML}/Pd/WNi$ catalyst.

FY 14

- 1. Syntheses of hollow Pd and Pt to maximize the hollow and to optimize the particle size in relation to the degree of atom's contraction and activity.
- 2. Tuning the effect of core on a Pt monolayer shell by hetero-layered core structure. Graphene oxide as support.
- 3. Electrodeposition of selected alloys as stable, inexpensive cores with known segregation properties. Optimization of the cores shapes.
- 4. Using non-aqueous solvents for electrodeposition of reactive metal cores, UPD of various MLs for Pt ML deposition on reactive metals and alloys.

19

Summary

Further improvements of Pt ML catalyst aimed at reducing the cost of the Pd core, increasing stability and improving syntheses efficiency have been achieved in 2012.

These include several syntheses of hollow Pd cores, Pd alloys with refractory metals, Pd₉Au₁ alloy, Pt monolayer on ultrathin Pd nanowires and electrodeposited Pd nanostructures, verified in scale-up syntheses and the MEA tests.

Pt utilization of 100%, the unique feature of Pt ML catalysts with electrodeposited cores. Technology based on electrodeposition of catalysts on GDLs appears promising.

The mechanism of stability of core-shell electrocatalysts*, including the self-healing mechanism, have been verified in tests involving potential cycling to 1.2V at 3M.

*K. Sasaki, H. Naohara, Y.M. Choi, et al., *Nature Communications*, 2012, 3, 1115.

Pt_{ML} electrocatalysts for ORR --- On the road to application and can be further improved!

Technical back-up slides

Brookhaven Science Associates

Pt nanoparticles on CNTs

Limiting current part is not well-defined probably caused by poor CNT distribution on disk surface.

The activity is ~ 0.3 mA/cm²_{Pt}, better than that of commercial Pt/C (0.22 mA/cm²_{Pt}).

Brookhaven Science Associates

Simultaneous stability and activity improvements by selective removal of inactive, low stability sites

Au deposition by galvanic replacement

Completing partial Pt monolayer to promote activity and stability

Cycle test: 1000 cycles between 0.6 – 1.4 V at 50 mV/s

 $E_{1/2}$: 23 mV decrease by cycle test. Miniscule Au coverage has an effect (arrow). (31 mV decrease for $Pt_{ML}/Pd/C$)

Simultaneous stability and activity improvements by selective removal of inactive, low stability sites

Ir deposition by galvanic replacement

Cycle test: 1000 cycles between 0.6 – 1.4 V at 50 mV/s

E_{1/2}: 8 mV increase by Ir deposition 23 mV decrease by cycle test (31 mV decrease for Pt_{ML}/Pd/C) Brookhaven Science Associates

ECSA :54% decrease after cycle test (from initial area) (same as that of Pt_{ML}/Pd/C)