

Fuel-Cell Fundamentals at Low and Subzero Temperatures

Adam Z. Weber

Lawrence Berkeley National Laboratory

Solicitation Partners:

United Technologies Research Center

Los Alamos National Laboratory

3M Company

The Pennsylvania State University

Project ID # FC 026

May 15, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline</u>

- Project initiated FY09
 Start September 2009
- 4 year project duration
 End September 2013
- ♦ ~85% complete

Budget

- Total Project Funding: \$5,145k
 - DOE share: \$4,700k
 - Contractor share: \$445k
- ✤ Funding Received in FY11: \$812.5k
- ✤ Funding Received in FY12: \$1,290k
- Planned Funding for FY13: \$1,095k
 LBNL \$510k
 - Partners \$585k

Barriers

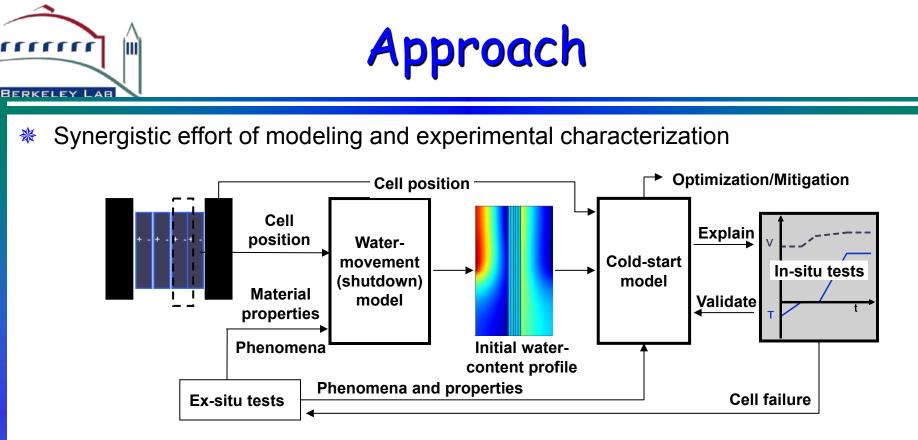
- 🔖 A. Durability
- 🗞 C. Performance
 - Cell Issues
 - Stack Water Management
 - System Thermal and Water Management
 - System Start-up and Shut-down Time and Energy/Transient Operation

Partners

- Project lead: Lawrence Berkeley NL
- Direct collaboration with Industry, National Laboratories and University (see list)
- Other collaborations with material suppliers and those with unique diagnostic or modeling capabilities
- $\boldsymbol{\boldsymbol{\varsigma}}$ Discussion with related project leads

Collaboration: Organizations/Partners

Lead


- Lawrence Berkeley National Laboratory: Adam Weber, Ahmet Kusoglu, Clayton Radke, Alastair MacDowell, Alexander Hexemer, Frances Allen
- Subcontractors
 - Science Strate S
 - Sale of the second state o
 - Solution Conter: Michael Perry
 - Scheme State University: Chao-Yang Wang
- Other relationships (directly funded through other DOE projects)
 - ✤ Ion Power: Stephen Grot (membrane and MEAs)
 - Signal Strate Strategy, NIST: Daniel Hussey, David Jacobson (neutron imaging of water)
 - State University: Michael Hickner (membrane thin films)
 - Solution Content State S
- Other relationships (no cost)
 - UC Berkeley/JCAP: Rachel Segalman (Nafion® scattering and other studies)
 - Seneral Motors: Craig Gittleman (Nafion[®] conductivity data)
 - Solution Calgary University: Kunal Kuran (Nafion[®] thin-film data and samples)
 - University of Michigan: Massoud Kaviany (Nafion[®] MD simulations, ESEM)

Relevance: Objectives

- Fundamental understanding of transport phenomena and water and thermal management at low and subzero temperatures using state-of-the-art materials
 - Examine water management with thin-film catalyst layers (NSTF)
 - Second se
 - Enable optimization strategies to be developed to overcome observed bottlenecks
 - Operational
 - Material
- Elucidate the associated degradation mechanisms due to subzero operation
 - Enable mitigation strategies to be developed

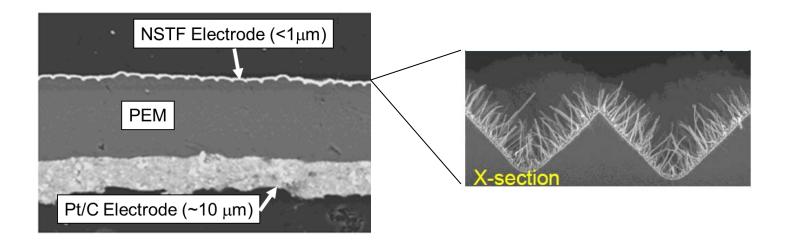
Improved understanding will allow for the DOE targets to be met with regard to cold start, survivability, performance, and cost

5

Multi-scale, multi-physics continuum-based modeling

- Develop, validate, and refine a series of models for cell performance including cold and cool operation, startup, and shutdown
- Separate the second second second stack properties and performance by the second secon
 - Measure critical properties including visualizing water and ice distributions
 - Utilize various assemblies and components to elucidate governing phenomena

Durability and degradation


- Elucidate and mitigate critical failure mechanisms related to cold and cool operation
- Experimentally observe and characterize failed cells

Approach: Cell Assemblies

* Utilize various assemblies to elucidate governing and controlling phenomena

Material Baseline		Alternative 1	Alternative 2	
Membrane	3M 850 EW			
Catalyst layer	NSTF PtCoMn	Low-loaded traditional		
GDL	MRC	SGL	Freudenberg	
MPL	Hydrophobic	None		
Flow field Quad serpentine				
Bipolar plate	Solid	Hybrid (one WTP)		

Workplan/Organization

		Fuel-Cell Fundamentals at Low and Subzero Temperatures					sLBN	NL Ma	nagement	
	LBNL PSU	LBNL, PSU	UTC LANL, 3M	LAI	nl, lbnl PSU		LBNL PSU		ANL 3M, PSU	
Task 1. Cold- start model		Degradation lodel	Task 3. St cell charac			Water ging		Model /ment		omponent erization
Steady state Startup Simple stack 3-D effects		degradation nical stress	Performance evaluation Stack studies Failure analysis			tron ray	optimi Performa	start zation ance loss nitigation	Membrane Catalyst layer Diffusion media	

LBNL

- Project management and coordination
- 🌭 Model development
- SDL and membrane characterization

LANL

- 🌭 Ex-situ component characterization
- Single-cell durability tests
- Seutron imaging

3M

Material supplier, single-cell testing, and testing knowledge including conditioning procedures

UTRC

- Sell parametric studies
- 🌭 Identify failure mechanisms
- Seal-world guidance

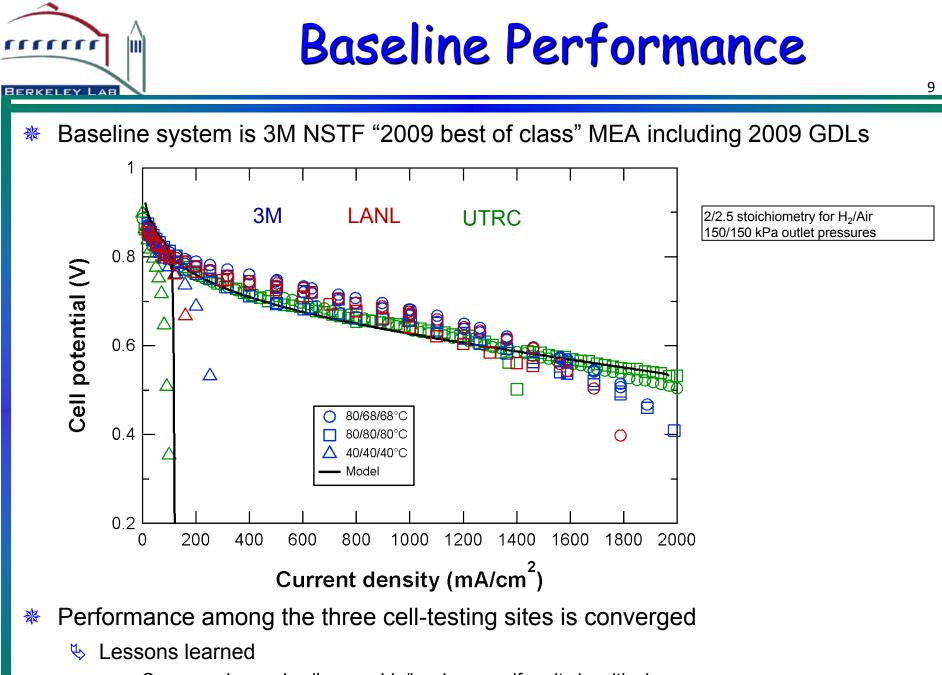
PSU

Develop 3-D scaling expressions and mechanical stress model

Other

Provide unique materials and diagnostics

Approach: FY13 Project Timeline

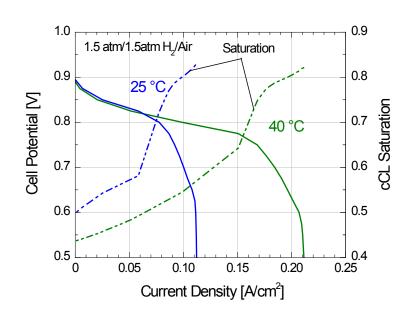

Begin 10/12	M1 M2 11/12 12/12	M3 M4 02/13 03/13	M5 M6 05/13 06/13	M7,M8,M9 09/12 End 09/13
10/12				09/13

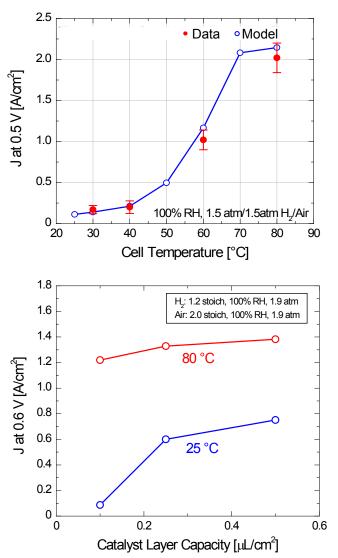
Major Milestones/Deliverables

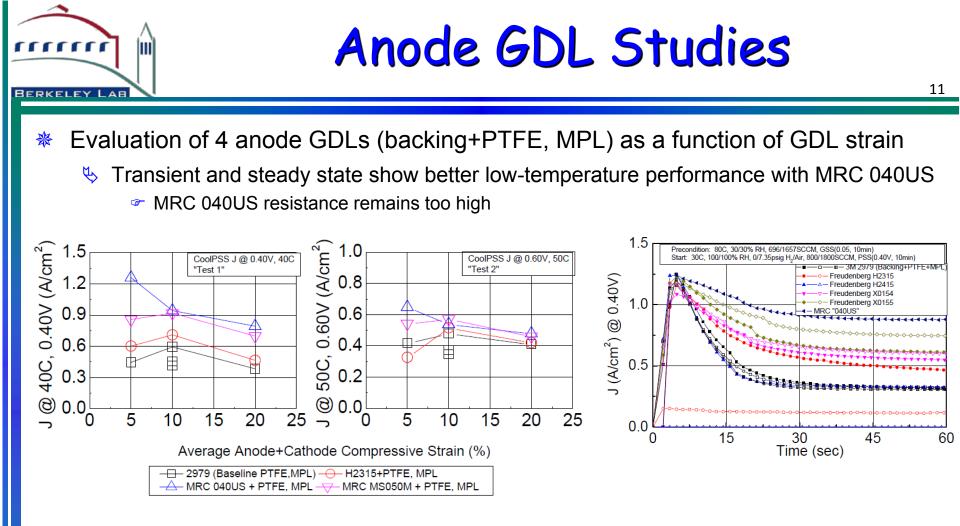
(m)

ໂກກກາ

- M1: Correlation developed between isothermal start and freeze/thaw with observed catalyst-layer cracking under ESEM and in-situ cell studies. (*completed, NSTF has much greater durability*)
- M2: Impact of 3 different GDLs on cell performance with two different cell-compression levels. (completed)
- M3: Agreement (<10% deviation) between model analogs and real MPLs in terms of breakthrough pressure and capillary-pressure saturation behavior. (*delayed due to issues of finding appropriate model materials*)
- M4: Results of impact of water balance on startup performance for both NSTF and low-loaded traditional MEAs. (*slight delay due to experimental reproducibility that appear to be resolved*)
- M5: Report of rainbow short-stack results with different cell diffusion media and baseline MEAs. (changed to studies using the adiabatic cell based on reviewer and Tech Team feedback)
- M6: Complete low and high resolution imaging of 3M cells and report results to LBNL. (*on track, some high resolution studies already completed*)
- M7: Report on optimum operating conditions and material properties for NSTF catalyst layers operating below 55°C. (*on track, model agreeing with experiments and now looking at parameter space*).
- M8: Impact of 3 different NSTF peak heights on cell performance. (on track, 1 of 3 peak heights completed)
- M9: Model results showing importance of compressive loads and mechanically induced degradation by layer including experimental comparison with ice-front propagation. (*on track, initial mechanical model completed*)




- Compression and cell assembly/hardware uniformity is critical
- Need to run and condition NSTF properly



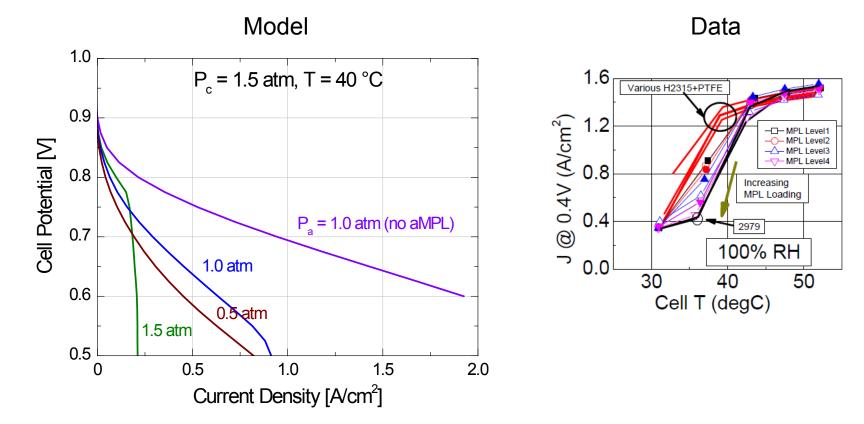
Modeling NSTF

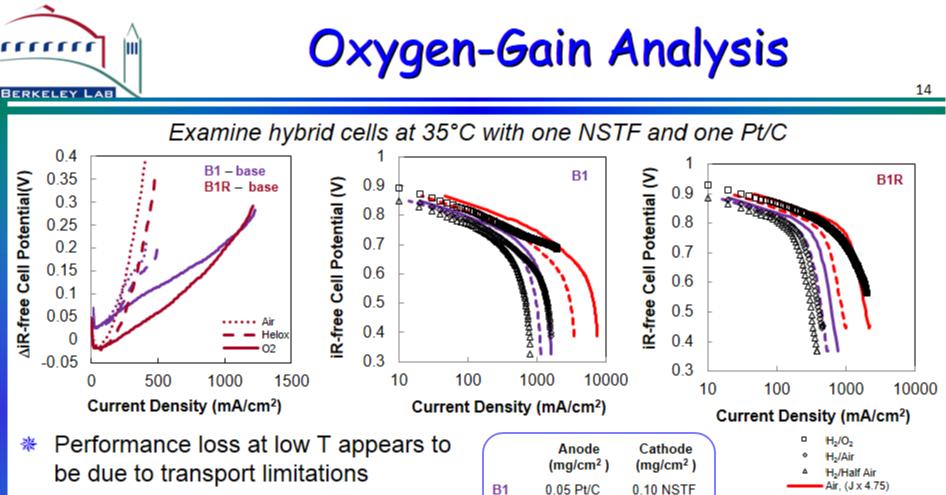
- Use 2-D mathematical model to examine performance with NSTF
 - Sood agreement with experimental data
 - Significant reduction in limiting current as temperature drops from 70 to 40°C
 - At higher temperatures the CL temperature is high enough to remove water through vapor phase by phase-change-induced flow
 - Near room temperature, severe CL flooding reduces the limiting current due to low watercapacity of NSTF CL

- Response generally decreases as compression increases from 10 to 20%, less consistent results for 5 to 10%
- Drop off of performance as approach 40 to 50°C

Anode GDL Studies

- Use high-resolution neutron imaging to compare water profiles between NSTF with 2979 and MRC 040US anode GDLs at 0.3 V
 - ✤ Less water at 80°C than 40°C
 - MRC 040US anode GDL consistently has less water in the MEA




Anode GDL Studies

- NSTF MEA low temperature performance is very sensitive to anode backing
 - Specific material factors responsible currently unknown

Model shows the importance of reducing liquid-water transport resistance and enhancing back transport

0.05 NSTF

0.1 NSTF

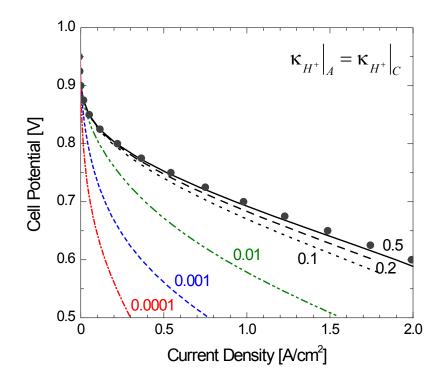
0.10 NSTF

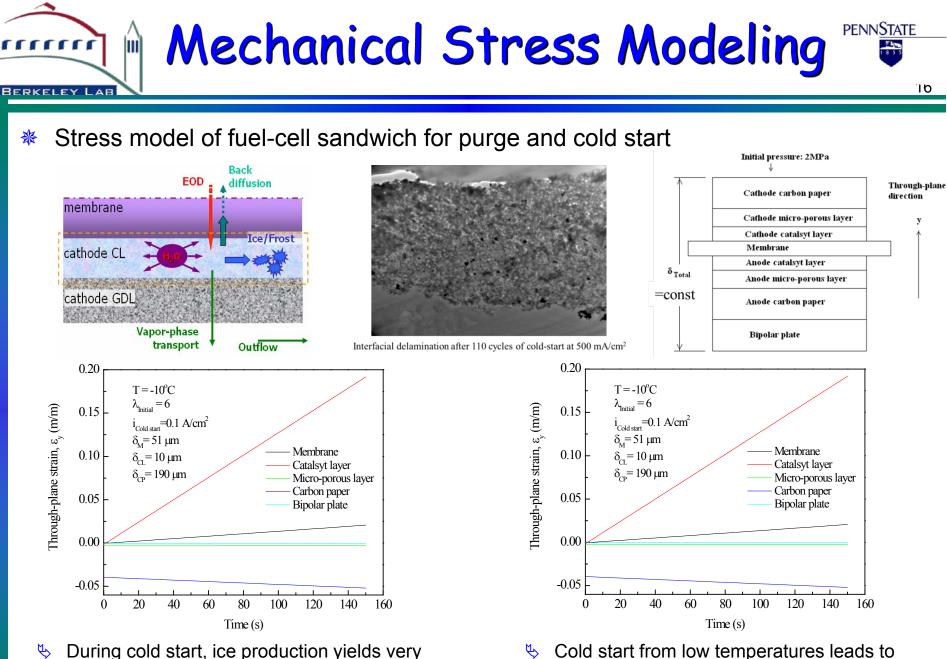
0.05 Pt/C

Base

B1R

- Ionic limitation and not O₂?
- ♦ Change in H₂ kinetics
- 🄄 Anode NSTF
 - Performance a function of oxidant
 - Ohmic limited at moderate current; limiting currents are ~ 1st order
- 🌭 Cathode NSTF
 - Different behavior on different oxidants 1st order on O₂, ~ ½ order on air

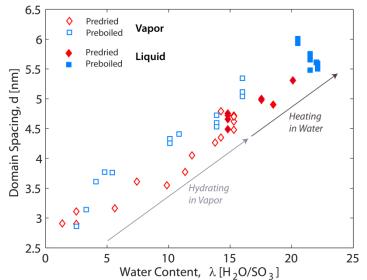


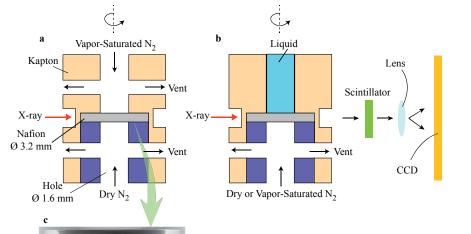

Air, (J x sqrt(4.75))

1/2Air to Air, (J x 2) 1/2Air to Air, (J x sqrt(2))

Impact of Proton Conductivity rrrrrr lui) 15

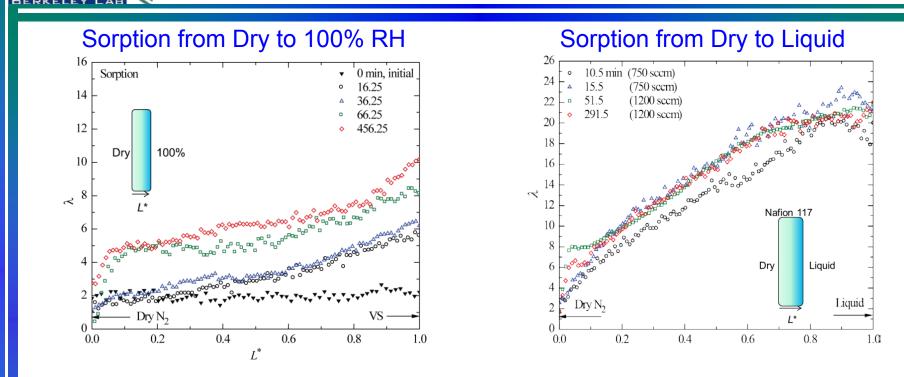
- Parametric study using model without aMPL at 40°C
 - NSTF proton conductivity has strong influence on the cell performance when conductivity is below 0.1 S/m



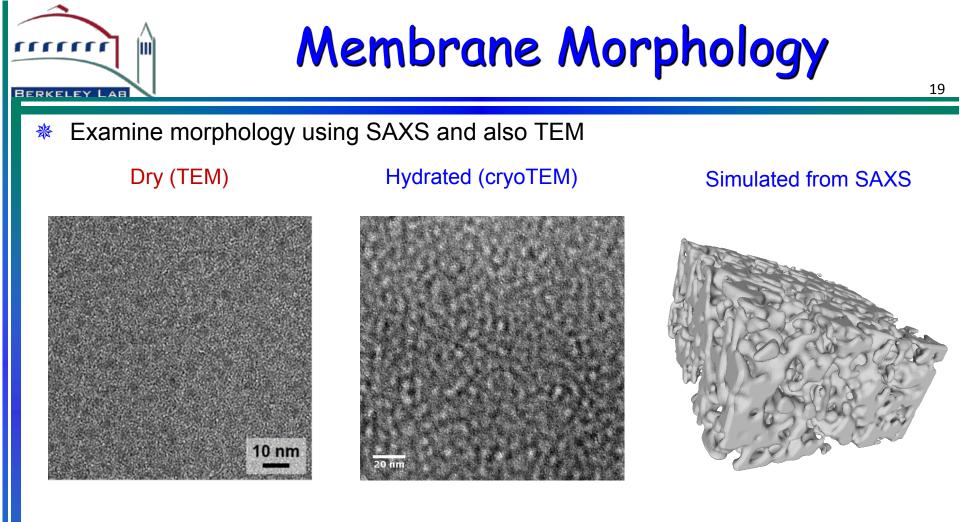

During cold start, ice production yields very large strain in CL, which could cause CL/mem delamination and CL pore structure collapse Cold start from low temperatures leads to large mechanical stress, and high start current density leads to large strain in CL

Membrane Water Profiles

- 17
- Understand that pretreatment, crystallinity, and humidity effects are controlled by same chemical/mechanical energy balance
 - Have seen some existence of interfacial phenomena
 - Unknown whether Schroeder's paradox occurs during a gradient
 - The water diffusion coefficient in literature varies, especially its dependence on water content
 - Expect different concavity in water profiles for dynamic versus steady state



- Measure membrane water profile
 - Use x-ray computed microtomography
 - Good combined temporal (~min) and spatial (~μm) resolution

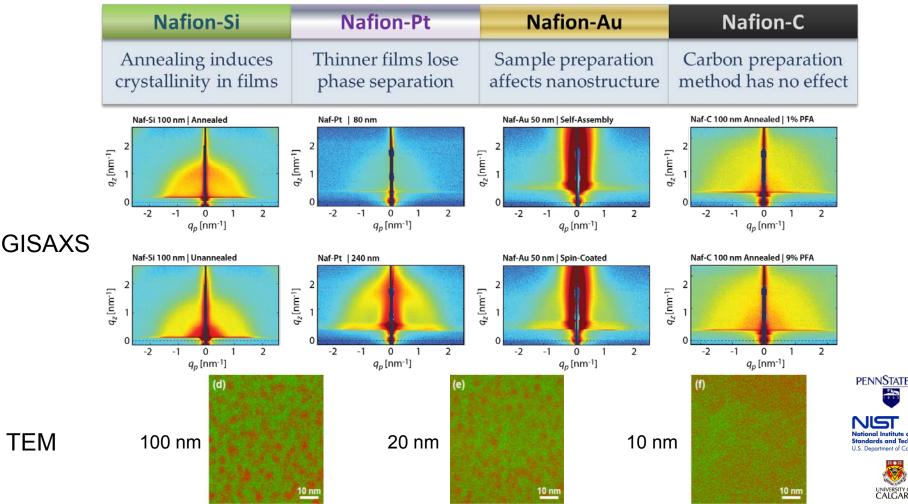

Kapton and Nafion are registered trademarks of E. I. du Pont de Nemours and Company

Membrane Water Profiles

With saturated vapor/dry, complex transient and steady-state profile

- Shape changes from concave to convex with time
 - Agrees with different dependence of diffusion coefficient for dynamic and steady state
- ✤ Lower values at boundaries suggest interfacial resistance
- With liquid/dry, rapid approach to steady-state profile
 - Solution Profile is continuous from λ = 22 to 4
 - No liquid interfacial resistance
 - No evidence of sharp transition from liquid to vapor value

- Need to determine what the phases are using low-loss EELS
- Next would be to model transport through the morphology


Thin-Film Morphology

20

rds and Tech

UNIVERSITY OF

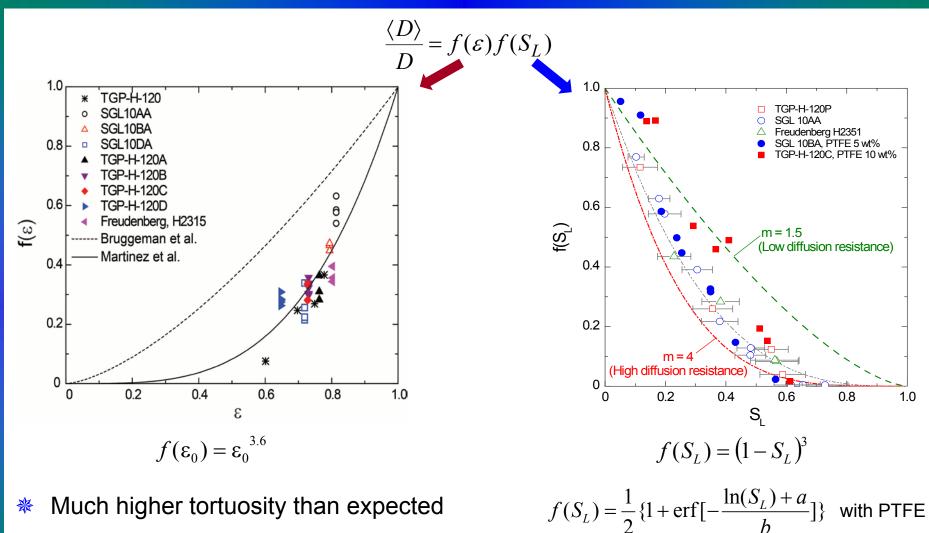
- Thin-film Nafion[®] shows different morphology
 - P Structure depends on interfacial interactions and film thickness
 - P Correlating structure with mass uptake and swelling


GDL Effective Diffusivity

- Effective diffusivity under saturated conditions is a key transport property that has not been adequately measure
- Designed a hydrogen-pump setup to measure the hydrogen-limiting current for different saturations

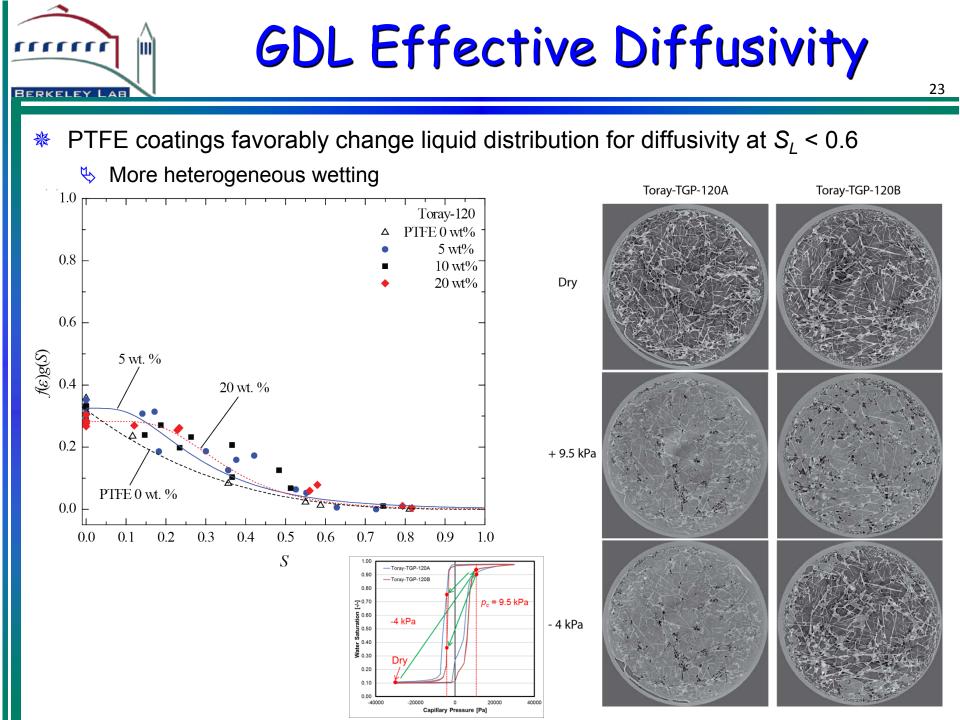
$$\left\langle D_{\rm H2-Ar} \right\rangle = \frac{i_o L_{\rm GDL}}{2 \, \mathrm{F} \, c_{\rm H2,o}}$$

- Exploiting the no spontaneous water-rejection properties of GDLs
- Effective diffusivity is composed of dry and wet contributions


$$\frac{\langle D \rangle}{D} = f(\varepsilon)f(S_L)$$

τογο

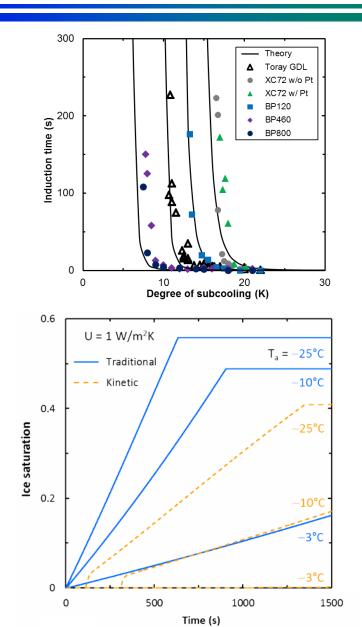
22


Much higher tortuosity than expected 畿

rrrrr

BERKELEY

LAB


畿 Similar dependences for different papers There is an impact of PTFE P

Freezing in Catalyst Layers

- Use dynamic-scanning-calorimetry (DSC) to measure freezing time
 - Scast catalyst layer inside DSC pan
 - ♦ Vary catalyst-layer properties
- Water takes longer to freeze in typical catalyst layers than in the gasdiffusion layer
- Use developed rate expression in isothermal freeze model
 - Induction time results in much different performance compared to traditional thermodynamic-based rate expressions
 - Currently correlating to experimental data

Future Work

Cell Performance

- UTRC to run cool and cold starts including adiabatic and temperature transients
 - STF and low-loaded traditional CLs
 - Run hybrid WTP cells
- LANL to run NSTF cells including various tests
 - Segmented cell
 - Power transients
 - NIST high and higher resolution imaging
- SM to run cells to determine water balance and impact of NSTF structure

Component characterization

- Traditional CLs
 - Examine thin-film membrane morphology
- 🍫 NSTF CLs
 - Proton migration on platinum
- 🍤 GDLs
 - Liquid-water movement out of the GDLs by droplets
 - Measurement of effective diffusivities, thermal conductivities, and relative permeabilities
- MPLs: how do they work with liquid water?
- 🍫 Membrane
 - Interfacial resistance and membrane morphology with different environments
- Modeling
 - Use data from all partners and understand the anode GDL and water-out-the-anode scheme for NSTF
 - bevelop transient model and examine CL water capacity versus water removal fluxes as a function of CL thickness
 - Optimize schemes and structures to increase low-temperature performance
- Examine failed MEAs and cyclical isothermal cold starts for durability concerns
- * Understand and increase the operating window with thin-film catalyst layers

Summary

Relevance/Objective:

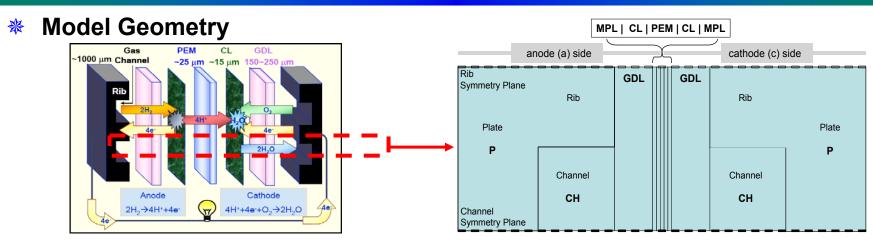
Help enable, optimize, and mitigate failure in state-of-the-art materials through fundamental understanding of operation at low and subzero temperatures

Approach/Collaborations:

Use synergistic combination of cell and component diagnostic studies with advanced mathematical modeling at various locations (national laboratories, industry, and academia)

Technical Accomplishments:

- Sombined modeling and experiment to understand low-temperature performance of NSTF
 - Examining impact of different anode GDLs
 - Hybrid cell assemblies to determine limiting layers and phenomena
- Measured effective diffusivities as a function of saturation for GDLs
 - Shows roughly cubic and not Bruggeman power-law dependence on saturation and porosity
- Developed mechanical stress model for cold start and ice formation and membrane swelling
- Investigated membrane morphology and transport, especially as thin films
 - Thin films below 50 nm exhibit different and more resistive properties and is dependent on the interfaces
 - Measured water profiles across the membrane with good temporal and spatial resolutions


✤ Future Work:

- Understand liquid-water movement, interactions, and freeze in fuel-cell components
- Benchmark cell performance and durability with different assemblies

Technical Back-Up Slides

Cold-Start Model

Model physics

rrrrr

BERKELEY

Thermodynamics

Ш

Standard cell potential Equilibrium H₂O content membrane, liquid, vapor, ice

Kinetics

Butler-Volmer for HOR, ORR H₂O phase change between ionomer, vapor liquid, vapor

Transport

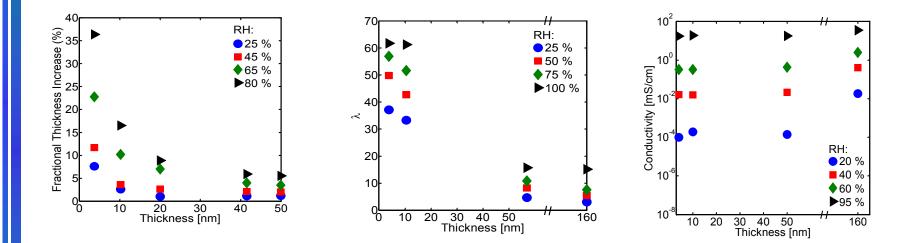
Stefan-Maxwell diffusion for gas-phase components Darcy's law for liquid, gas phases Ohm's law for e⁻ current Modified Ohm's law for H⁺ current H₂O transport by proton drag H₂O diffusion in membrane

Conserved quantities

Mass; Charge; Energy

Constitutive relations

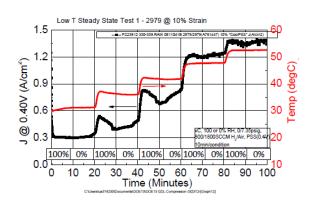
Faraday's law Ideal-gas law


Properties

Function of Tand H₂O content

Equations (12): 7 2nd-order PDEs; 5 Algebraic equations

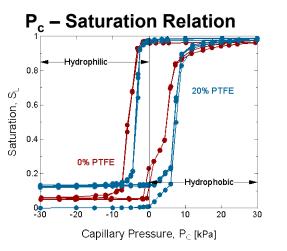
- From both ellipsometry and QCM, the thinner films have more swelling and higher water uptake
- * Conductivity decreases due to loss of phase mixing and extreme hydration



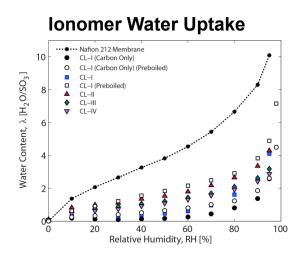
3M GDL/Compression Studies

- Anode work consisted of 3 basic series
 (28 MEAs, 22 constructions)
- 1. Anode Backing Screening (9 types)
- 2. Anode Backing/GDL Compression Effects (4 types @ 3 levels)
- 3. Periodic Baseline Checks (3 MEAs)
- Most evaluated over wide range of conditions.
 - Peak Power (80C).
 - Sensitivity Steady State (2 tests)
 - Low Temp Cool Start Transient vs. T, RH

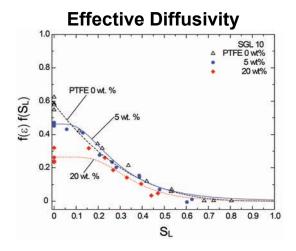
TY	Anode GDL	Cathode GDL	Comp	Series
1	Freudenberg H1410	3M 2979	10%	Anode Backing Screening
2	Freudenberg H2315	3M 2979	10%	Anode Backing Screening
2	Freudenberg H2415	3M 2979	10%	Anode Backing Screening
1	Freudenberg X0090	3M 2979	10%	Anode Backing Screening
2	Freudenberg X0154	3M 2979	10%	Anode Backing Screening
2	Freudenberg X0155	3M 2979	10%	Anode Backing Screening
1	MRC MS050M	3M 2979	10%	Error
1	MRC 040US	3M 2979	10%	Anode Backing Screening
1	3M 2979	3M 2979		Anode GDL - Compression
1	3M 2979	3M 2979	20%	Anode GDL - Compression
1	Freudenberg H2315+PTFE,MPL	3M 2979	5%	Anode GDL - Compression
1	Freudenberg H2315+PTFE,MPL	3M 2979	10%	Anode GDL - Compression
1	Freudenberg H2315+PTFE,MPL	3M 2979	20%	Anode GDL - Compression
1	MRC 040US	3M 2979	5%	Anode GDL - Compression
0	MRC 040US	3M 2979	10%	Anode GDL - Compression
1	MRC 040US	3M 2979	20%	Anode GDL - Compression
1	MRC 040US+PTFE, MPL	3M 2979	5%	Anode GDL - Compression
1	MRC 040US+PTFE,MPL	3M 2979	10%	Anode GDL - Compression
1	MRC 040US+PTFE,MPL	3M 2979	20%	Anode GDL - Compression
1	MRC MS050M+PTFE, MPL	3M 2979	5%	Anode GDL - Compression
1	MRC MS050M+PTFE, MPL	3M 2979	10%	Anode GDL - Compression
1	MRC MS050M+PTFE, MPL	3M 2979	20%	Anode GDL - Compression
3	3M 2979	3M 2979	10%	Baselines
28				
MEA:	Roll Good CCM, one lot (Anode:	: 0.05mgPGM/cm2 PtCoMr 3M 825EW 24u). Single ce		•



30



Model Kinetics and Transport Properties


- Kinetic parameters
 - ♦ 3M and UTRC (NSTF MEA); Los Alamos (Pt/C MEA)
 - Literature (R.K. Ahluwalia et al., J. Power Sources, 215, 2012)
- Transport properties
 - Measured at LBNL (Pc saturation relation, ionomer water uptake, effective gas diffusivity, effective thermal conductivity, etc.)
 - Also taken from literature

P.K. Das, A. Gripping, A. Kwong, and A.Z.Weber, *JES*, 159, B489-B496, 2012.

A. Kusoglu, A. Kwong, K.T. Clark, H.P. Gunterman, and A.Z. Weber, *JES*, 158, F530-F535, 2012.

31

G.S. Hwang and A.Z. Weber, *JES*, 159, F683-F692, 2012.

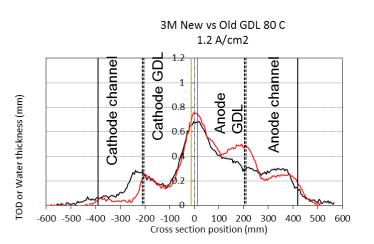
Neutron-Imaging Comparison

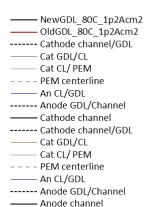
- Similar water contents at 80C
 - ✤ Need to do tests at 40C

<u>**3M cells</u>**: NSTF MEA, cathode GDL fixed, vary anode GDL.</u>

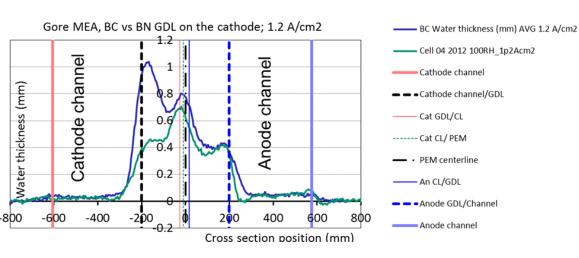
2.5 cm2 cell, 100/200 sccm H_2 /Air (fixed flows), <u>10.5 psig</u> <u>backpressure, 80 C (or 40 C</u>), 100% RH

Co-flow, inlets high


Gore MEA: 0.2/0.4 mg Pt/cm2 loading, Pt/C, 710 Membrane (18 microns thick).


VARY cathode GDL (same substrate, vary MPL only), anode GDL fixed.

The GDLs are from SGL Carbon.


2.5 cm2 cell, 100/200 sccm H_2 /Air (fixed flows), <u>zero backpressure, 80</u> <u>C only</u>, 100% RH

Co-flow, inlets high

32

