

AURORA Program

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks

Presenter: Robert Dross (PM) Principal Investigator: Amedeo Conti Nuvera Fuel Cells May 16, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID # **FC028**

Program Overview

Timeline

- Started: Sept. 2009 \bullet
- Completed: Nov. 2012

Budget

- Total project funding
 - \$4.46 M (DOE, includes \$375K to LBNL)

Johnson Matthey Fuel Cells

– \$1.57 M

(Cost Share)

Barriers addressed – (B) Cost (C) Performance

Barriers

(E) System thermal & water management

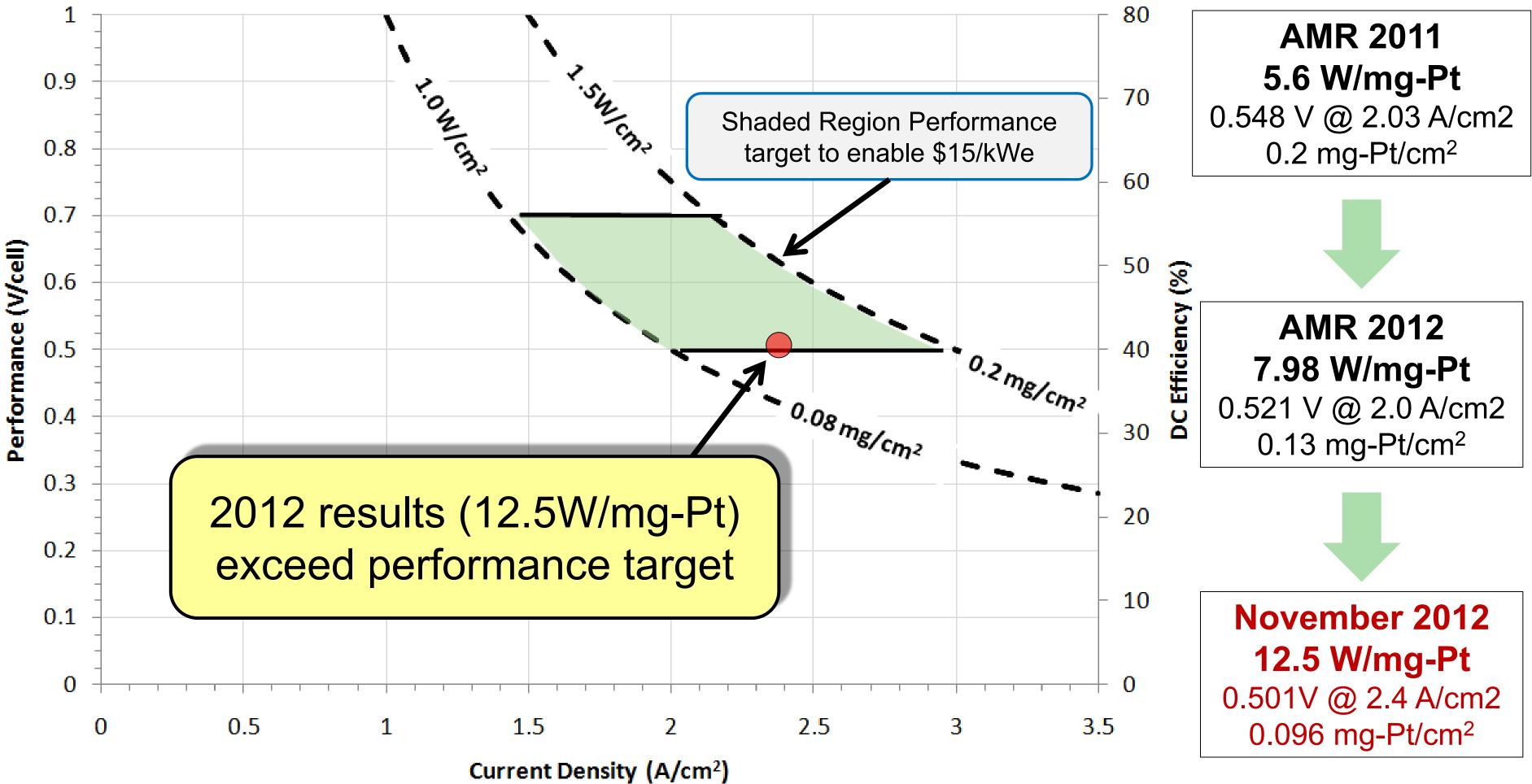
Partners

Johnson Matthey Fuel Cells Penn State University / University of Tennessee Lawrence Berkeley Lab

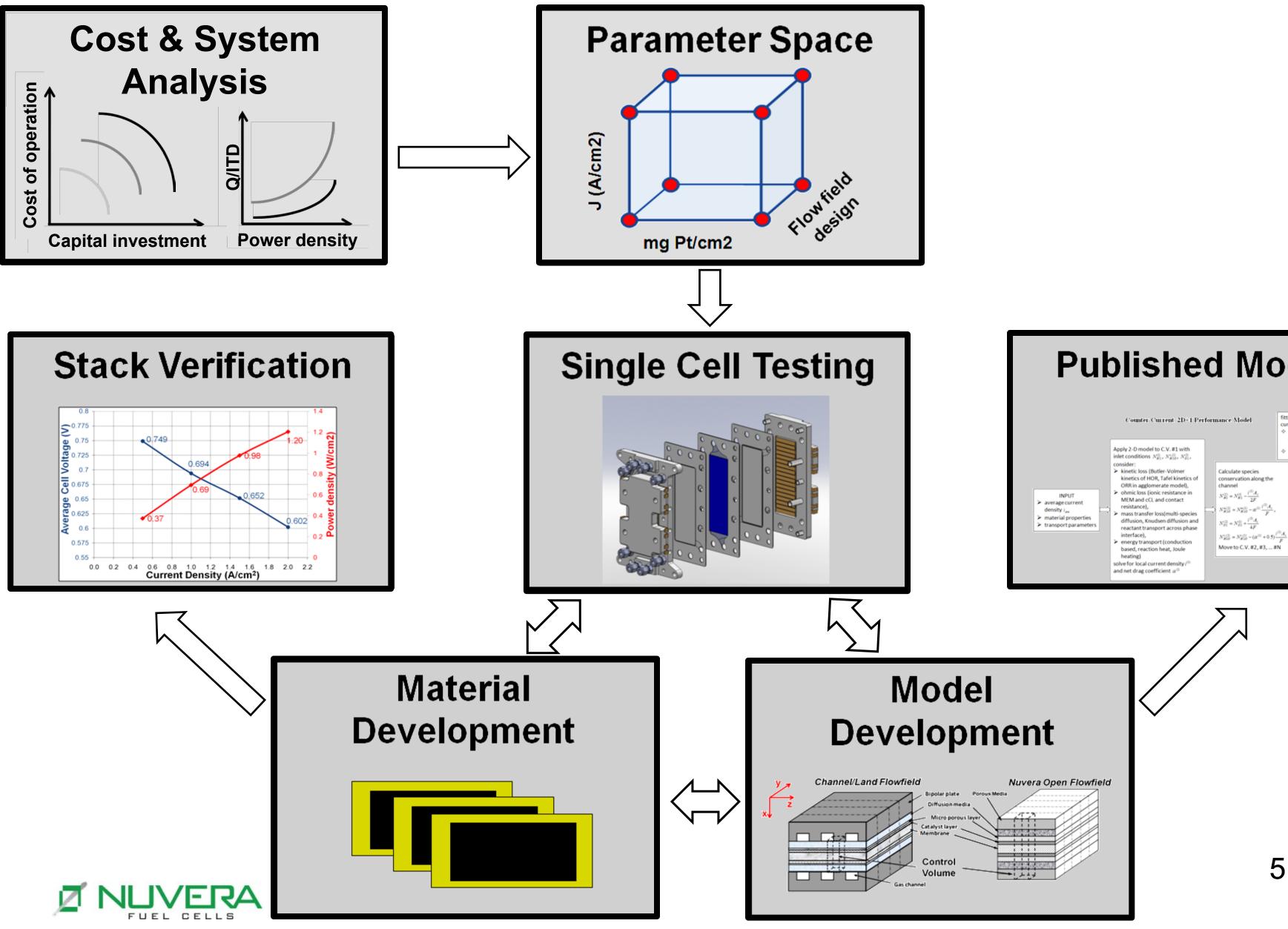
Relevance

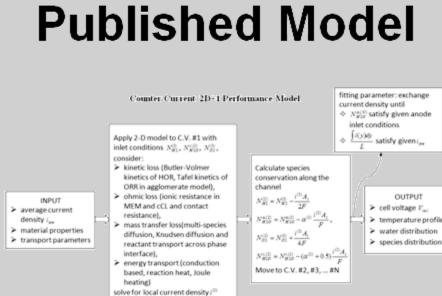
The **objective** of this program is to optimize the efficiency of a stack technology meeting DOE 2015 cost targets.

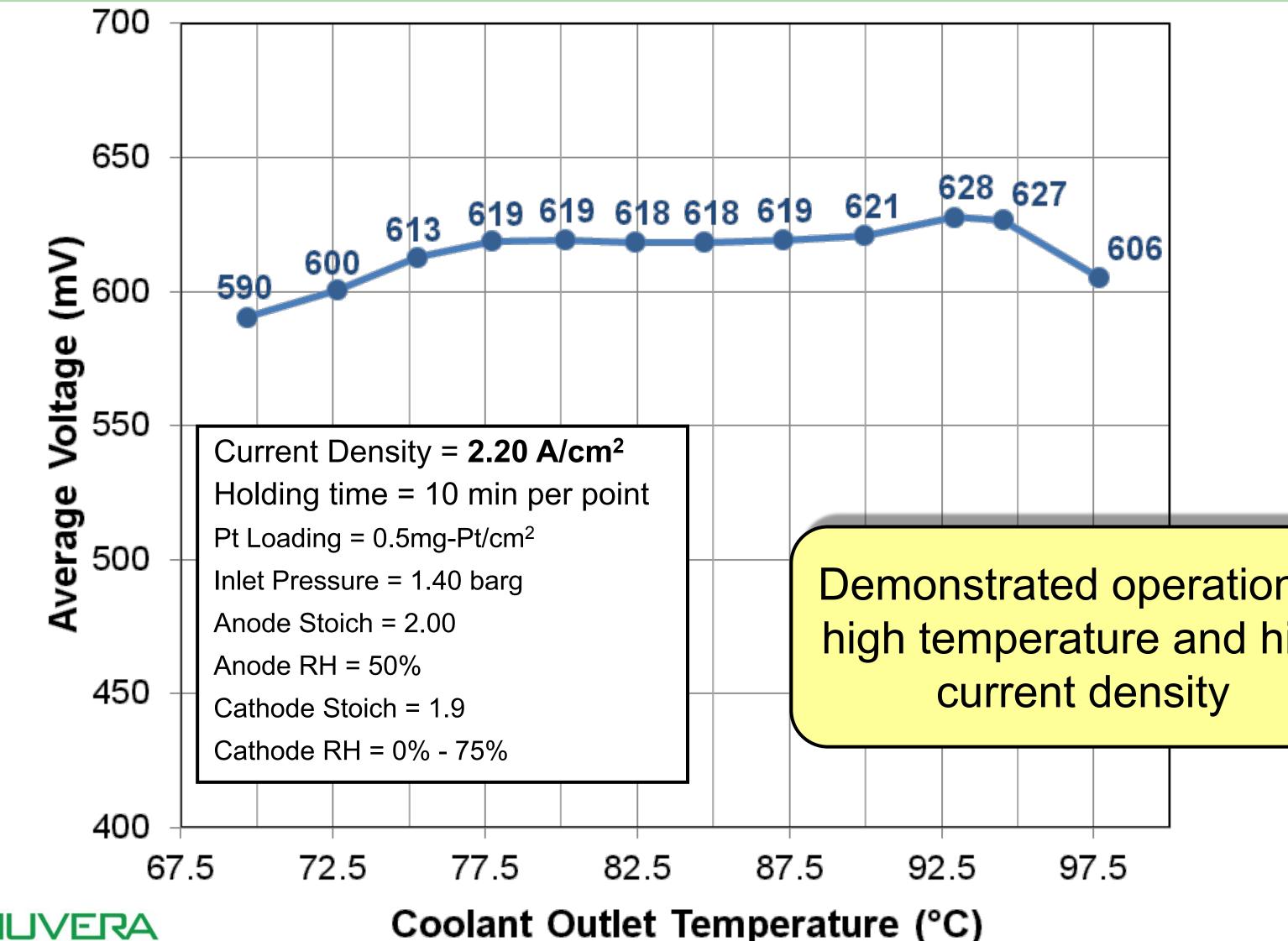
	Table 3.4.4 Technical Targets: 80-kW _e (net) Transportation Fuel Cell Stacks Operating on Direct Hydrogen ^a											
Characteristic	Units	2011 Status	2017 Targets	2020 Targets								
Stack power density ^b	W/L	2,200 ^c	2,250	2,500								
Stack specific power	W / kg	1,200 ^c	2,000	2,000								
Stack efficiency ^d @ 25% of rated power	%	65	65	65								
Cost ^e	\$ / kW _e	22 ^f	15	15								
Durability with cycling	hours	2,500 ^g	5,000 ^h	5,000 ^h								
Q/ΔT ⁱ	kW/ºC	_	1.45	1.45								


Based on 2002 dollars and cost projected to high-volume production (500,000 stacks per year).

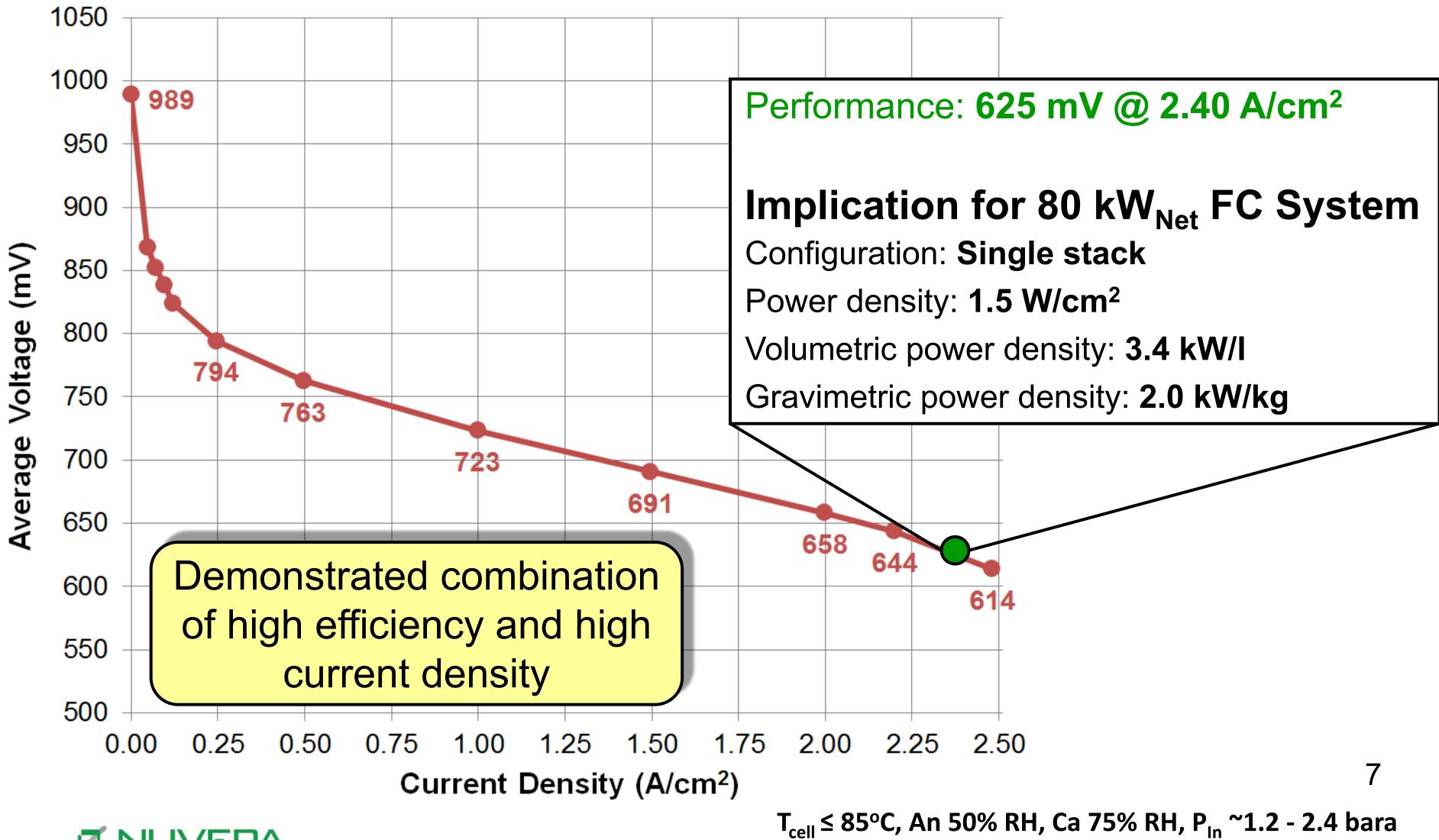
Program has been successfully completed


Technical Target - Approach


Target: Demonstrate stable and repeatable high power performance on a full format fuel cell stack: 7.5 W/mg-Pt @ 500mV.



Program Approach


Stack Testing Stable performance at 95°C on full format, 10 cell stack running at high current density

Demonstrated operation at high temperature and high

6

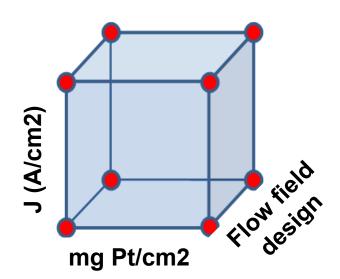
Stack Testing High efficiency at high current density on full format, 4 cell stack

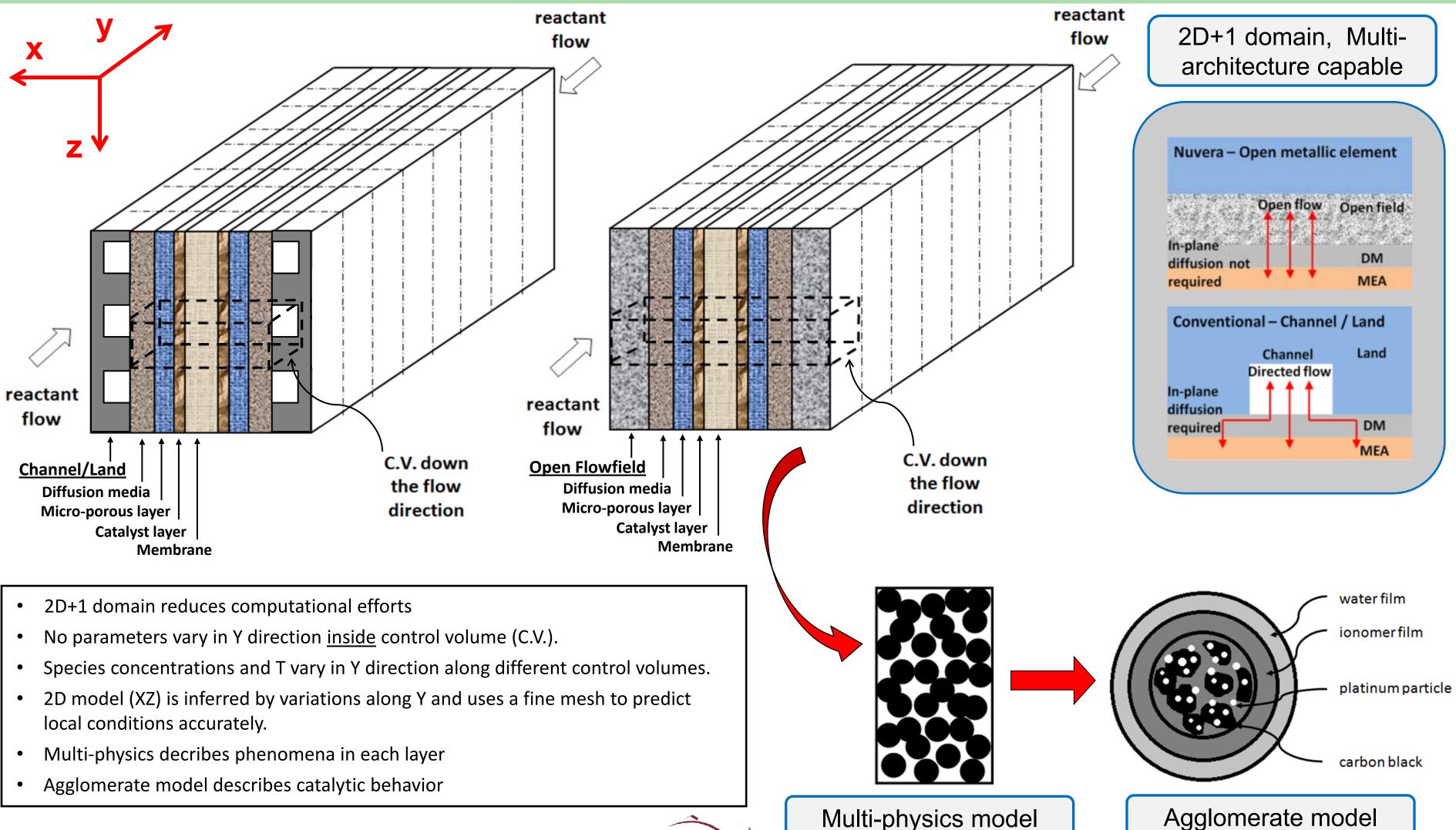
0.5 mg Pt/cm² Total Loading

Model Roadmap

A model capable of predicting high current density operation in different architectures is the central deliverable of the program

- Single phase model generation from PSU 2D channel/land model Q2 2010 Completed \geq 2D +1, counter flow reactants, compatible with multiple architectures
- Initial validation with empirical Nuvera model Q3 2010 Completed
- Initial performance verification Q4 2010 Completed
- > Multi-phase physics implementation Q1 2011 Completed
 - Verification with empirical Nuvera model
 - Initial performance verification
- > Agglomerate electrode model implementation (LBNL) Q1 2011 Completed
- Tune model parameters and collect dataset Q3 2011 Completed
- > Model Validation: Demonstrate predictive capability Q4 2011 Completed
- Additional Model Validation— Q3 2012 Completed in Q4 2012 > Validate: High Temperature, Channel Land Architecture, Low Pt Loading
- Model Publication Q3 2012 Completed in Q2 2013



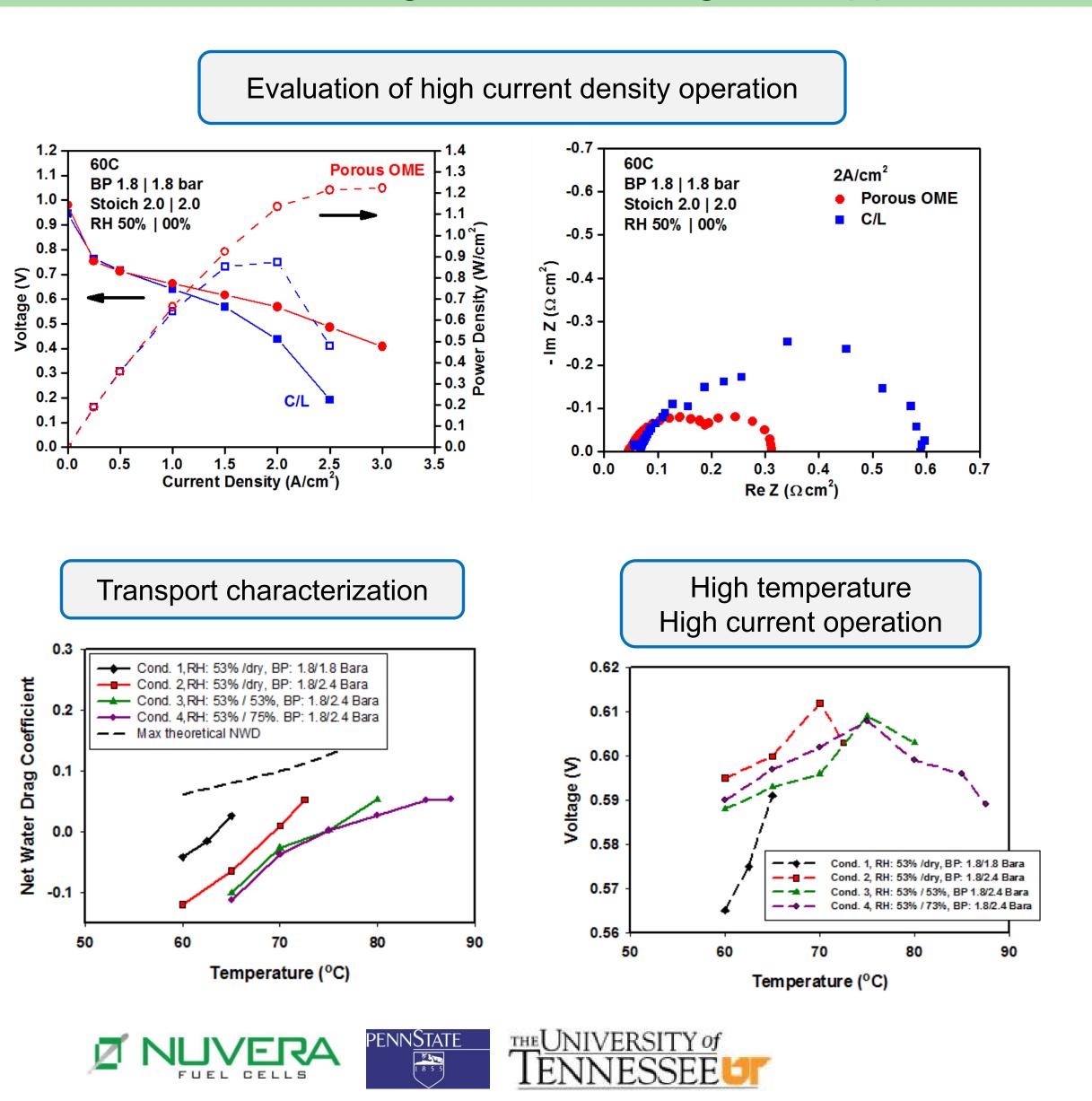


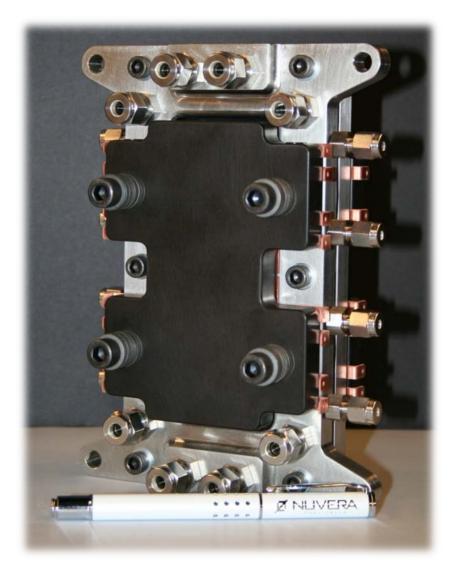
FC Modeling - Approach

The physics of the quasi-3D, multi-architecture model is as similar as possible between channel/land and open flowfields.

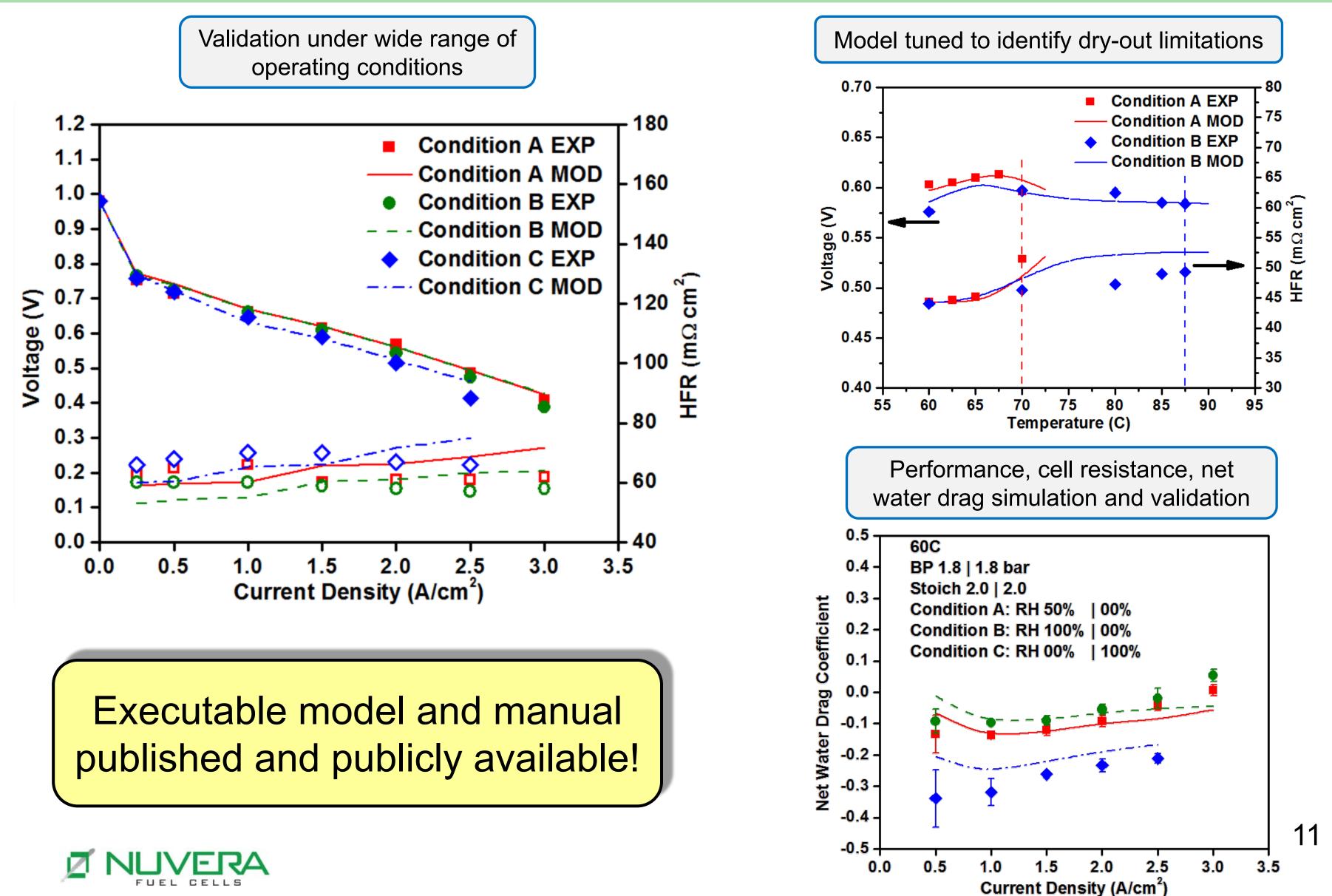
.....

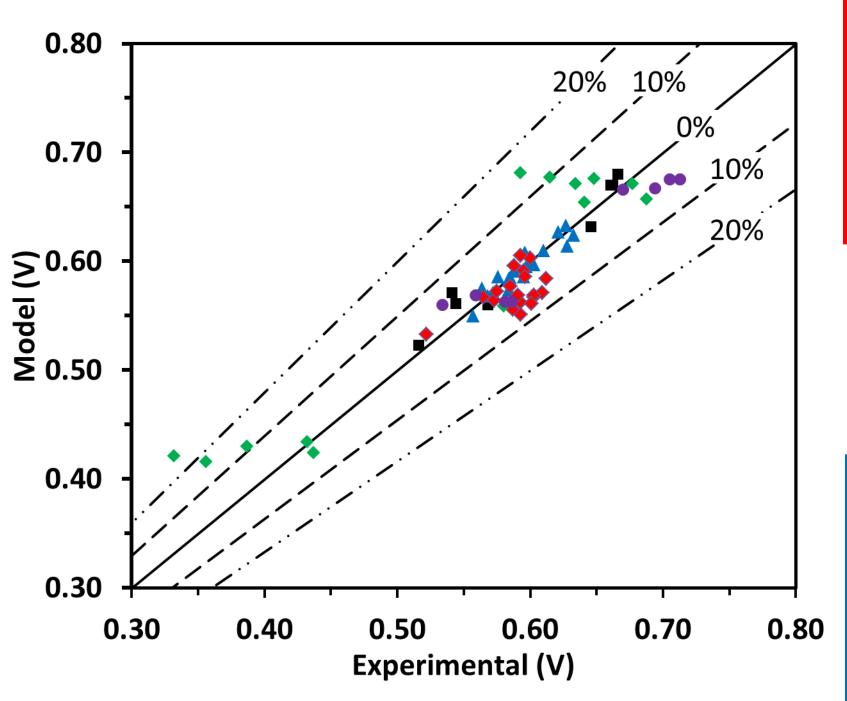
BERKELEY LAB


THE UNIVERSITY of


IENNESSEE

penn<u>State</u>


Single Cell Testing to Support Model Development


Ultra-Low Pt loading High current **OPERATION** (exceeds DOE target of 5.5 W/mgPt) 1.2 Ultra-Low loading: Density (W/mg_{Pt}) 60C 1.1 BP 1.8 | 1.8 bar (demonstrated by Nuvera) 1.0 Stoich 2.0 | 2.0 A 0.025 | C 0.106 mg_m/cm² - 9 RH 50% | 00% 0.9 8 0.8 7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 A 0.05 | C 0.15 mg_/cm scific -3 0.3 sp __ _ _ _ _ _ _ _ _ _ _ _ -2 0.2 Normal loading: atalyst 0.1 A 0.15 | C 0.40 mg_ /cm² υ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Current Density (A/cm²) 10

Development of Transport Model

Model Validation Summary

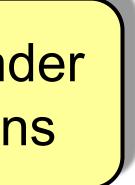
Successfully validated under a wide range of conditions

Reactant Humidification

	Catalyst	Cell	BP	Stoich	Humidification	Coolant	i (Acm ⁻²)	τůο		Cell V (V)	
Condition	Loading ¹	Structure ²	(bar)	3101011	An / Ca	Flow Rate ³	(ACIII)	1(0)	Ехр	Mod	error
1	normal	OME	1.8/1.8	2.0/2.0	50% / 0%	high	1	60	0.662	0.670	1.2%
1	normai	OIVIL	1.0/ 1.0	2.0/ 2.0	30%7 0%		2	00	0.568	0.560	1.4%
C	normal	OME	1.8/1.8	2.0/2.0	100% / 0%	high	1	60	0.661	0.670	1.4%
2	normai	OIVIE	1.0/1.0	2.0/2.0	100% / 0%	mgn	2	00	0.544	0.561	3.1%
2	normal	OME	1.8/1.8	2.0/2.0	0% / 100%	high	1	60	0.646	0.632	2.2%
3	normai	OIVIE	1.0/1.0	2.0/2.0	0% / 100%	mgn	2	00	0.516	0.523	1.4%
4	normal	OME	1.8/1.8	2.0/2.0	50% / 0%	high	1	60	0.666	0.680	2.1%
4	normai	OIVIE	1.0/1.0	heliox	30% / 0%	mgn	2	00	0.541	0.571	5.5%

Low Pt Load	ing
-------------	-----

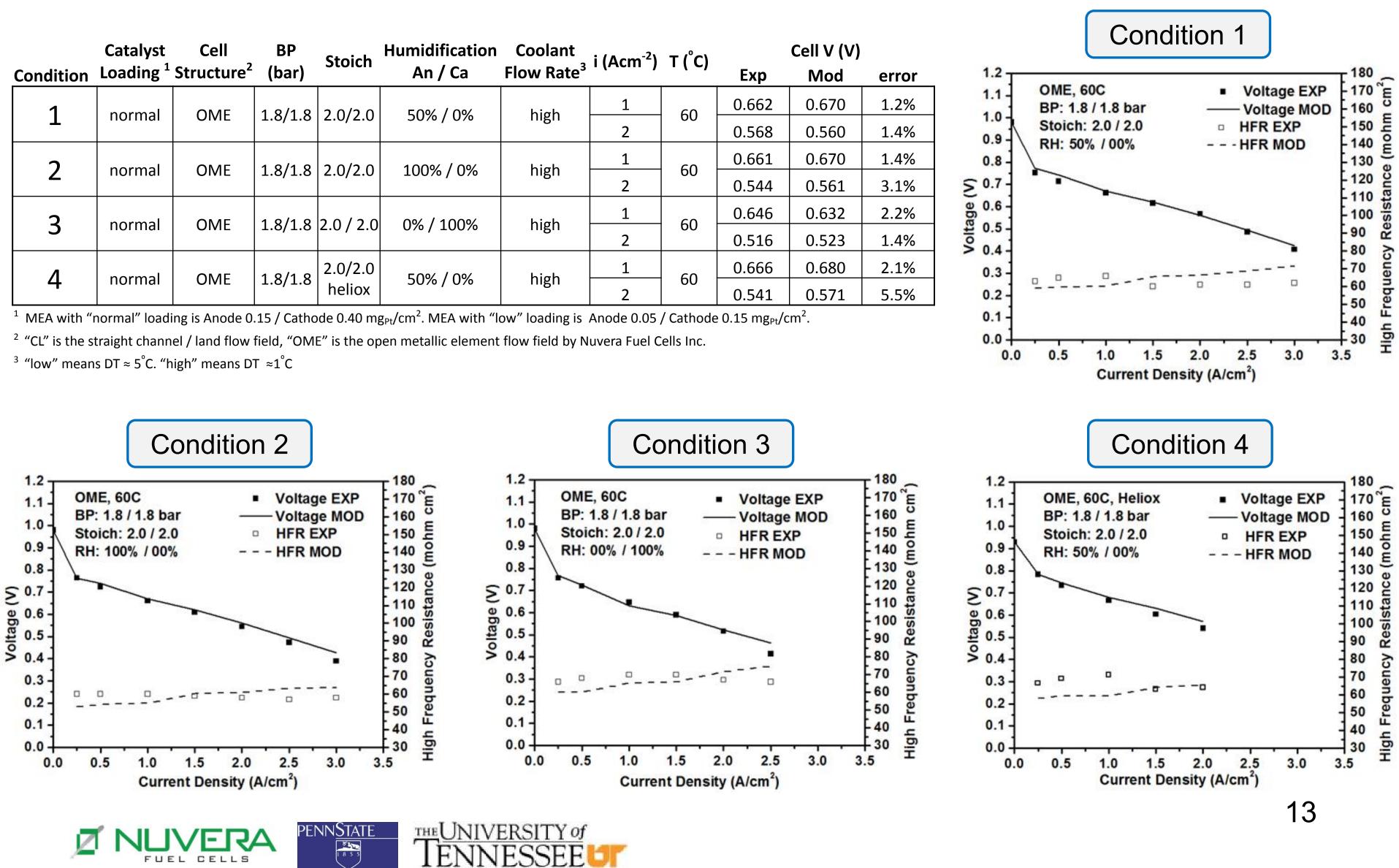
Condition	Catalyst Loading ¹	Cell Structure ²	BP (bar)	Stoich	Humidification An / Ca	Coolant Flow Rate ³	i (Acm ⁻²)	т (°с)	Ехр	Cell V (V) Mod	error
21	low	OME	1.8/1.8	2.0/2.0	50% / 0%	high	1	60	0.694	0.667	3.9%
21	1011	OWIE	1.0/ 1.0	2.0, 2.0	30/07 0/0		2	00	0.559	0.569	1.8%
22	low	OME	1.8/1.8	2.0/2.0	50% / 0%	high	1	70	0.670	0.666	0.6%
22	10 W	OIVIL	1.0/ 1.0	2.0/2.0	30%7 0%	iligii	2	70	0.534	0.560	4.9%
22	laur	OME	1.8/2.4	2.0/2.0	50% / 50%	hiah	1	90	0.705	0.675	4.3%
23	low	OIVIE	1.8/2.4	2.0/2.0	50% / 50%	high	2	90	0.581	0.563	3.1%
24	law	OME	1 0/2 4	2.0/2.0		hiah	1	90	0.713	0.675	5.3%
24	low	UIVIE	1.8/2.4	2.0/2.0	50% / 75%	high	2	90	0.586	0.563	3.9%
					•						


Channel Land Architecture

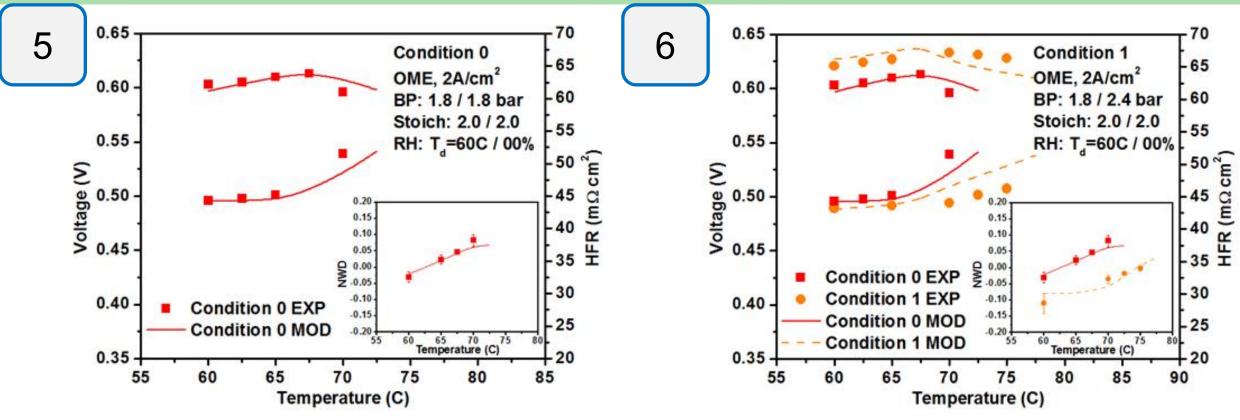
Condition	Catalyst Loading ¹	Cell Structure ²	BP (bar)	Stoich	Humidification An / Ca	Coolant Flow Rate ³	i (Acm ⁻²)	т (°С)	Ехр	Cell V (V) Mod	error
14	normal	CL	1.8/1.8	2.0/2.0		low	1	60	0.641	0.654	2.0%
14	lioina	02	110/ 110	2.0, 2.0	30,07 0,0		2	00	0.437	0.424	3.0%
15	normal	CL	1.8/1.8	2.0/2.0	50% / 0%	low	1	60	0.688	0.657	4.5%
15	norma	CL	1.0/ 1.0	heliox	30%7 0%	1000	2	00	0.580	0.559	3.6%
16	normal	CL	1.8/1.8	2.0/2.0	50% / 0%	low	1	70	0.648	0.676	4.3%
10	normai	CL	1.0/1.0	2.0/2.0	30% / 0%	1000	2	70	0.432	0.434	0.5%
17	normal	CL	1.8/1.8	2.0/2.0	50% / 50%	low	1	70	0.634	0.671	5.8%
17	normai	CL	1.0/ 1.0	2.0/ 2.0	30% / 30%	1000	2	70	0.387	0.430	11.1%
18	normal	CL	1.8/1.8	2.0/2.0	50% / 0%	low	1	80	0.615	0.677	10.1%
10	normai	CL	1.0/ 1.0	2.0/2.0	30% / 0%	IOW	2	80	0.356	0.416	16.9%
10	normal	CL	1.8/1.8	2.0/2.0	50% / 50%	low	1	80	0.593	0.681	14.8%
19	normal	L	1.0/1.8	2.0/2.0	50% / 50%	IUW	2	00	0.332	0.421	26.8%
20	normal	CL	1.8/2.4	2.0/2.0	50% / 75%	low	1	90	0.677	0.671	0.9%

Temperature Sensitivity High DT

Condition	Catalyst Loading ¹	Cell Structure ²	BP (bar)	Stoich	Humidification An / Ca	Coolant Flow Rate ³	i (Acm ⁻²)	т (°с)	Ехр	Cell V (V) Mod	error
								60	0.573	0.564	1.6%
								65	0.585	0.577	1.4%
10	normal	OME	1.8/1.8	2.0/2.0	50% / 0%	high	2	70	0.593	0.562	5.2%
								72.5	0.593	0.551	7.1%
								75	0.522	0.533	2.1%
								60	0.565	0.567	0.4%
11	normal	OME	1.8/1.8	2.0/2.0	50% / 0%	low	2	62.5	0.575	0.572	0.5%
								65	0.591	0.569	3.7%
								60	0.595	0.591	0.7%
12	normal	OME	1.8/2.4	2.0/2.0	50% / 0%	low	2	65	0.600	0.603	0.5%
12	normai	OIVIL	1.0/ 2.4	2.0/2.0	50/07 0/0	1000	2	70	0.612	0.584	4.6%
								72.5	0.603	0.567	6.0%
								60	0.588	0.596	1.4%
								65	0.593	0.605	2.0%
								70	0.596	0.586	1.7%
13	normal	OME	1.8/2.4	2.0/2.0	50% / 50%	low	2	75	0.609	0.571	6.2%
								80	0.603	0.569	5.6%
								82.5	0.601	0.561	6.7%
								85	0.587	0.556	5.3%


Temperature Sensitivity Low DT

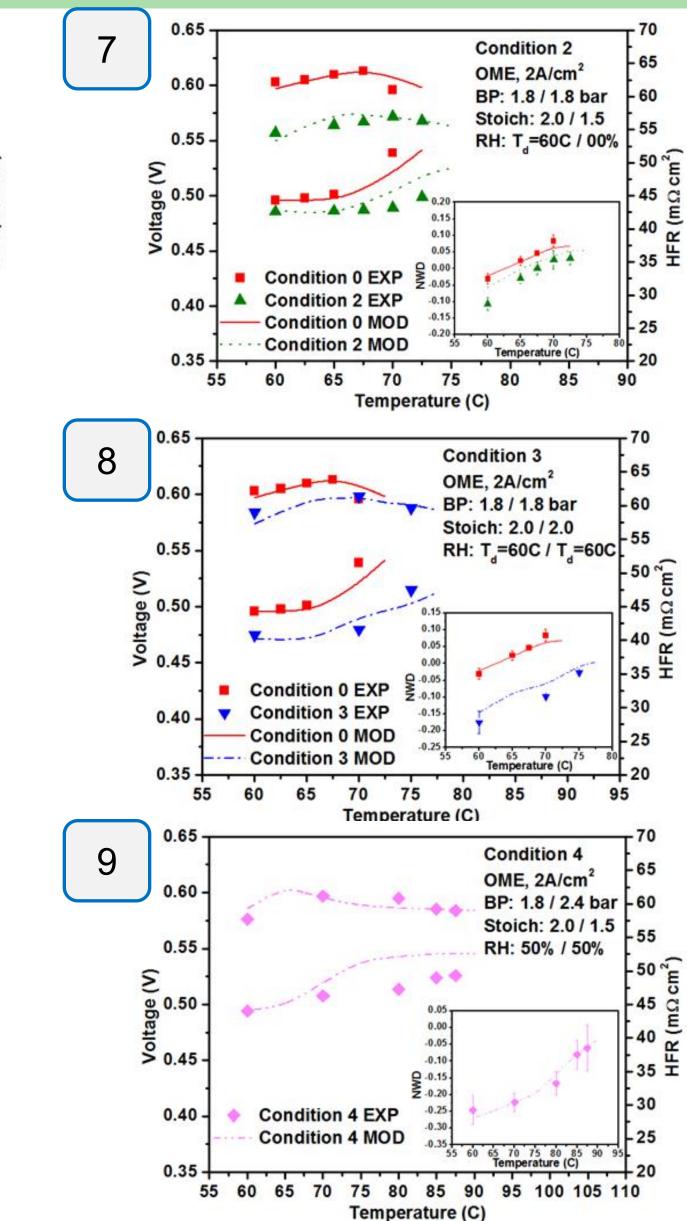
Condition	Catalyst Loading ¹	Cell Structure ²	BP (bar)	Stoich	Humidification An / Ca	Coolant Flow Rate ³	i (Acm ⁻²)	т ([°] С)	Ехр	Cell V (V) Mod	error
								60	0.603	0.597	1.0%
5	normal	OME	1.8/1.8	2.0/2.0	60°C / 0%	high	2	65	0.610	0.610	0.0%
								70	0.596	0.608	2.0%
								60	0.621	0.627	1.0%
6	normal	OME	1 8/2 4	2.0/2.0	60°C / 0%	high	2	65	0.627	0.633	1.0%
0	norma	OWIE	1.0/ 2.4	2.0/ 2.0	00 07 070		-	70	0.633	0.624	1.4%
								75	0.628	0.614	2.2%
								60	0.557	0.550	1.3%
7	normal	OME	1 8/1 8	2.0/1.5	60°C / 0%	high	2	65	0.564	0.575	2.0%
	norma	OWIE	1.0, 1.0	2.0/ 1.5	00 07 070		-	70	0.572	0.571	0.2%
/								72.5	0.568	0.568	0.0%
								60	0.584	0.574	1.7%
8	normal	OME	1.8/1.8	2.0/2.0	60°C / 60°C	high	2	65	0.598	0.597	0.2%
								70	0.588	0.591	0.5%
								60	0.576	0.586	1.7%
9								70	0.597	0.595	0.3%
	normal	OME	1.8/2.4	2.0/1.5	50% / 50%	high	2	80	0.595	0.586	1.5%
						-		85	0.585	0.585	0.0%
								87.5	0.584	0.584	0.0%


Validation with varied Reactant Humidification

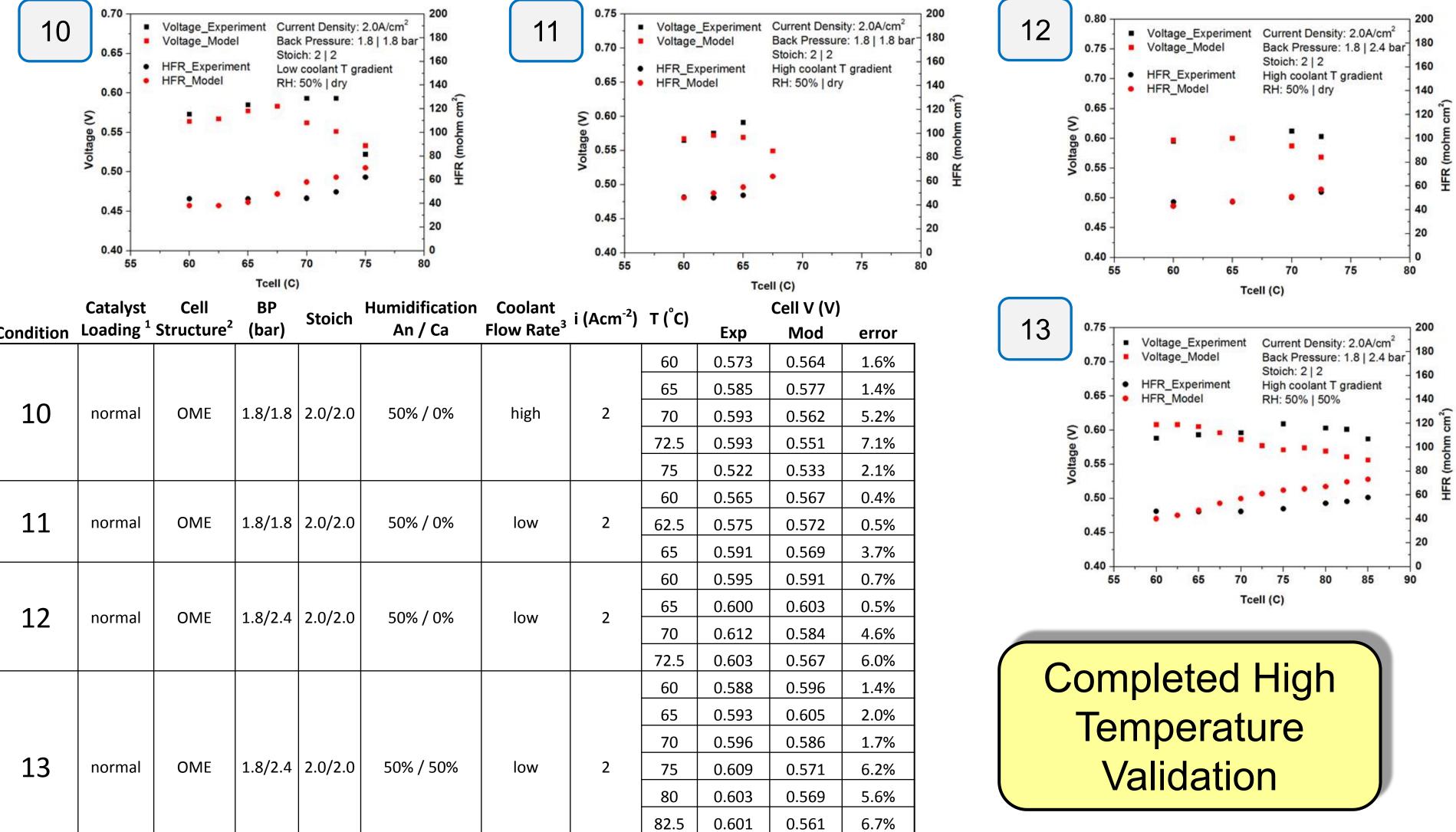
	Catalyst	Cell	BP	Stoich	Humidification	Coolant Flow Rate ³	i (Acm ⁻²)	Т ([°] С)		Cell V (V)	
Condition	Loading *	Structure ²	(bar)		An / Ca	Flow Rate			Ехр	Mod	(
1	normal	OME	1 8/1 8	2.0/2.0	50% / 0%	high	1	60	0.662	0.670	
	погна		1.0/1.0	2.0/2.0	50%70%		2	00	0.568	0.560	
2	normal	OME	10/10	2.0/2.0	100% / 0%	high	1	60	0.661	0.670	
Ζ	normal	OIVIE	1.0/1.0	2.0/2.0	100%/0%	IIIgII	2	00	0.544	0.561	
3	normal	OME	10/10	2.0 / 2.0	0% / 100%	bigh	1	60	0.646	0.632	
5	normal	OIVIE	1.0/1.0	2.0 / 2.0	0%/100%	high	2	00	0.516	0.523	
	normal		1.8/1.8	2.0/2.0		high	1	60	0.666	0.680	
4	normal	OME	1.0/1.0	heliox	50% / 0%	high	2	60	0.541	0.571	

CELLS

Temperature Sensitivity Validation at Low DT



	Catalyst	Cell	BP (har)	Stoich	Humidification An / Ca	Coolant Flow Rate ³	i (Acm ⁻²)	τ(°c)		Cell V (V)		
Condition	Loading ¹	Structure ²		Storen	An / Ca	Flow Rate ³		1(0)	Ехр	Mod	error	
								60	0.603	0.597	1.0%	
5	normal	OME	1.8/1.8	2.0/2.0	60°C / 0%	high	2	65	0.610	0.610	0.0%	
								70	0.596	0.608	2.0%	
								60	0.621	0.627	1.0%	
6	normal	OME	1.8/2.4	2.0/2.0	60°C / 0%	high	2	65	0.627	0.633	1.0%	
0			1.0/2.4	2.0/2.0	00 07 078	ingi	۷.	70	0.633	0.624	1.4%	
								75	0.628	0.614	2.2%	
								60	0.557	0.550	1.3%	
7	normal	OME	1 8/1 8	2 0/1 5	60°C / 0%	high	2	65	0.564	0.575	2.0%	
	normal	normal		1.8/1.8	2.0/1.5	60°C / 0%	high	2	70	0.572	0.571	0.2%
								72.5	0.568	0.568	0.0%	
								60	0.584	0.574	1.7%	
8	normal	OME	1.8/1.8	2.0/2.0	60°C / 60°C	high	2	65	0.598	0.597	0.2%	
								70	0.588	0.591	0.5%	
								60	0.576	0.586	1.7%	
9								70	0.597	0.595	0.3%	
	normal	OME	1.8/2.4	2.0/1.5	50% / 50%	high	2	80	0.595	0.586	1.5%	
								85	0.585	0.585	0.0%	
								87.5	0.584	0.584	0.0%	


¹ MEA with "normal" loading is Anode 0.15 / Cathode 0.40 mg_{Pt}/cm². MEA with "low" loading is Anode 0.05 / Cathode 0.15 mg_{Pt}/cm².

² "CL" is the straight channel / land flow field, "OME" is the open metallic element flow field by Nuvera Fuel Cells Inc.

³ "low" means DT \approx 5°C. "high" means DT \approx 1°C

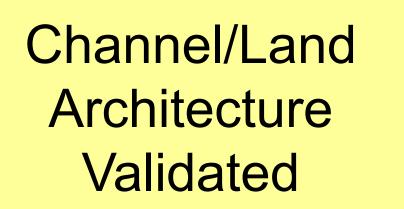
Temperature Sensitivity Validation at high DT

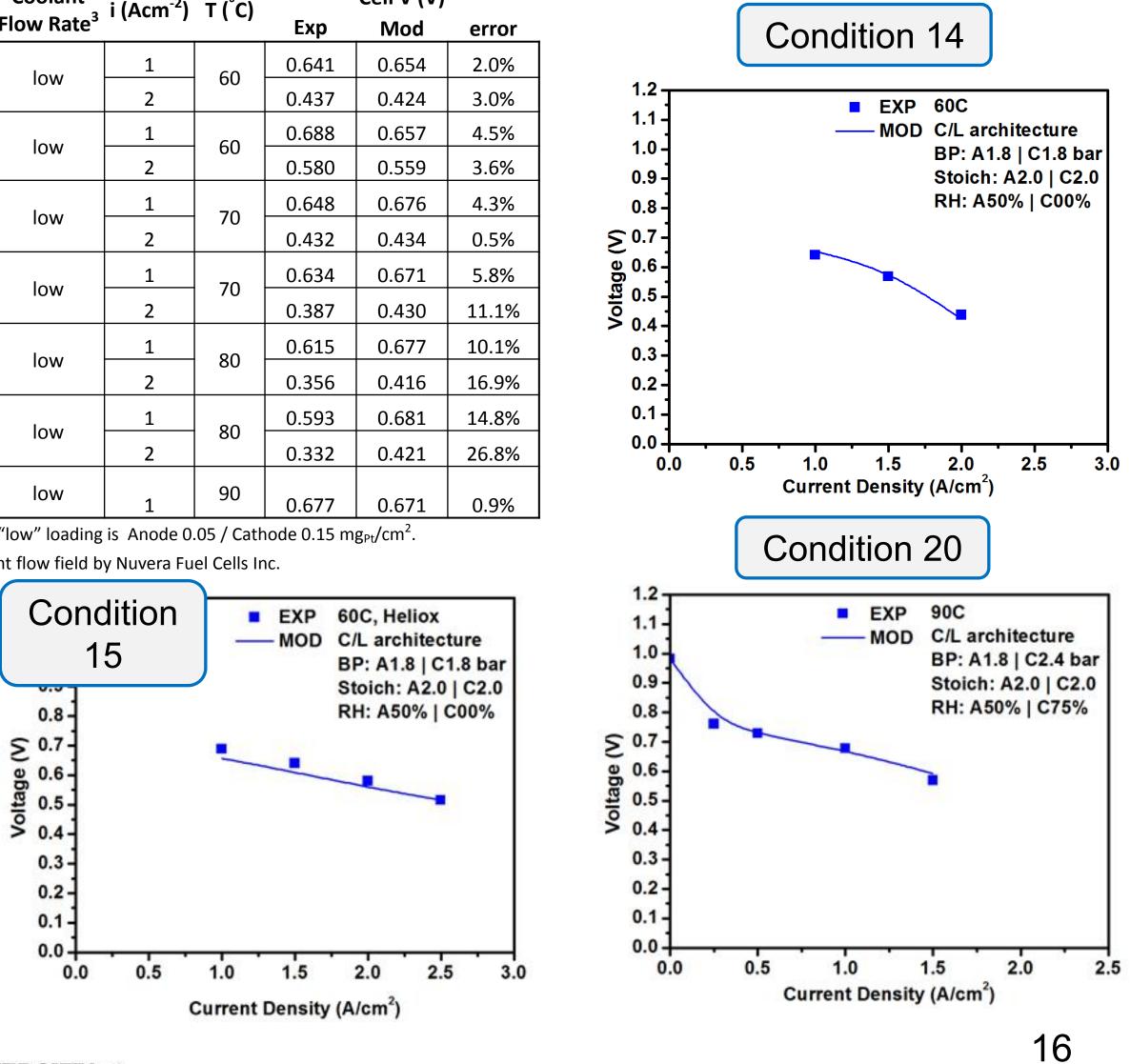
	Catalyst	Cell	BP	Stoich	Humidification	Coolant	i (Δcm ⁻²)	ד (° ר)		Cell V (V)	
Condition	Loading ¹	Structure ²	(bar)	50000	An / Ca	Coolant Flow Rate ³			Ехр	Mod	error
								60	0.573	0.564	1.6%
								65	0.585	0.577	1.4%
10	normal	OME	1.8/1.8	2.0/2.0	50% / 0%	high	2	70	0.593	0.562	5.2%
								72.5	0.593	0.551	7.1%
								75	0.522	0.533	2.1%
								60	0.565	0.567	0.4%
11	normal	OME	1.8/1.8	2.0/2.0	50% / 0%	low	2	62.5	0.575	0.572	0.5%
								65	0.591	0.569	3.7%
								60	0.595	0.591	0.7%
12	normal	OME	1 2/2 /	2.0/2.0	50% / 0%	low	2	65	0.600	0.603	0.5%
	погна		1.0/2.4	2.0/2.0	30% / 0%	10 00	Z	70	0.612	0.584	4.6%
								72.5	0.603	0.567	6.0%
								60	0.588	0.596	1.4%
								65	0.593	0.605	2.0%
								70	0.596	0.586	1.7%
13	normal	OME	1.8/2.4	2.0/2.0	50% / 50%	low	2	75	0.609	0.571	6.2%
								80	0.603	0.569	5.6%
								82.5	0.601	0.561	6.7%
								85	0.587	0.556	5.3%

¹ MEA with "normal" loading is Anode 0.15 / Cathode 0.40 mg_{Pt}/cm². MEA with "low" loading is Anode 0.05 / Cathode 0.15 mg_{Pt}/cm².

² "CL" is the straight channel / land flow field, "OME" is the open metallic element flow field by Nuvera Fuel Cells Inc.

³ "low" means DT \approx 5°C. "high" means DT \approx 1°C


Channel Land Architecture Validation

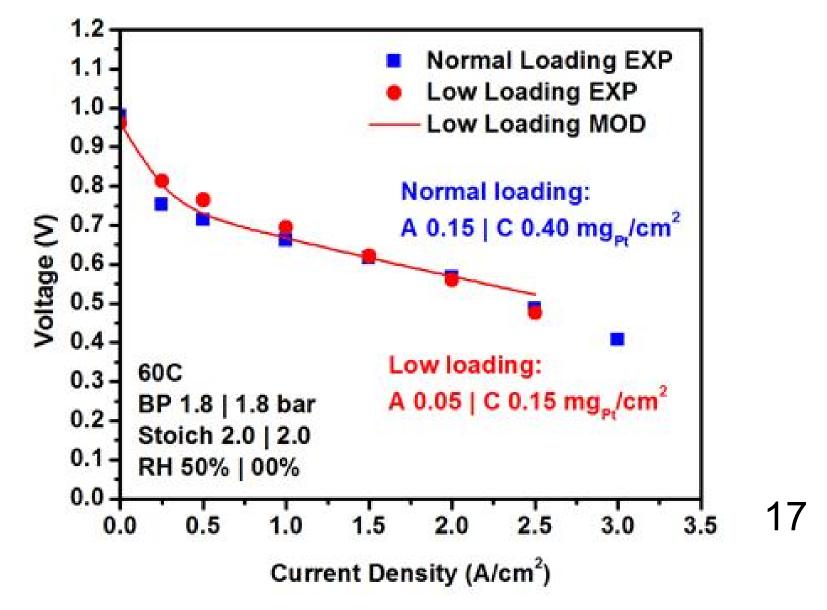

(Condition	Catalyst Loading ¹	Cell Structure ²	BP (bar)	Stoich	Humidification An / Ca	Coolant Flow Rate ³	i (Acm ⁻²)	т ([°] С)	Ехр	Cell V (V) Mod	erro
Γ										-		
	14	normal	CL	1.8/1.8	2.0/2.0	50% / 0%	low	1	60	0.641	0.654	2.0%
╞								2		0.437	0.424	3.0%
	15	normal	CL	1.8/1.8	2.0/2.0	50% / 0%	low	1	60	0.688	0.657	4.5%
	15	поппа		1.0/1.0	heliox	50% / 0%	low	2	00	0.580	0.559	3.6%
	16			1 0 / 1 0	20/20		low	1	70	0.648	0.676	4.3%
	16	normal	CL	1.8/1.8	2.0/2.0	50% / 0%	low	2	70	0.432	0.434	0.5%
	17	normal		10/10	20/20		low	1	70	0.634	0.671	5.8%
	17	normal	CL	1.8/1.8	2.0/2.0	50% / 50%	low	2	70	0.387	0.430	11.19
	10	normal		1 0 / 1 0	20/20		low	1	80	0.615	0.677	10.19
	18	normal	CL	1.8/1.8	2.0/2.0	50% / 0%	low	2	80	0.356	0.416	16.99
	10	normal		1 0 / 1 0	20/20		low	1	90	0.593	0.681	14.89
	19	normal	CL	1.8/1.8	2.0/2.0	50% / 50%	low	2	80	0.332	0.421	26.89
	20	normal	CL	1.8/2.4	2.0/2.0	50% / 75%	low	1	90	0.677	0.671	0.9%

¹ MEA with "normal" loading is Anode 0.15 / Cathode 0.40 mg_{Pt}/cm². MEA with "low" loading is Anode 0.05 / Cathode 0.15 mg_{Pt}/cm².

² "CL" is the straight channel / land flow field, "OME" is the open metallic element flow field by Nuvera Fuel Cells Inc.

³ "low" means DT \approx 5°C. "high" means DT \approx 1°C

Low Pt Loading Validation


	Catalyst	Cell	BP	Stoich	Humidification	Coolant	$i(\Lambda cm^{-2})$	τ (°c)		Cell V (V)	
Condition	Loading ¹	Structure ²	(bar)	5000	An / Ca	Coolant Flow Rate ³			Ехр	Mod	error
21	low	OME	1.8/1.8	2.0/2.0	50% / 0%	high	1	60	0.694	0.667	3.9%
	1010	ONIL	1.07 1.0	2.0/2.0	50707 070	ingii	2	00	0.559	0.569	1.8%
27	low		1.8/1.8	2.0/2.0	50% / 0%	high	1	70	0.670	0.666	0.6%
22	10 w	OME	1.0/1.0	2.0/2.0	2.0/2.0 50% / 0%	Ingri	2	70	0.534	0.560	4.9%
23	low	OME	1.8/2.4	2.0/2.0	50% / 50%	high	1	90	0.705	0.675	4.3%
25	IOW	OIVIE	1.0/2.4	2.0/2.0	50% / 50%	IIIgII	2	90	0.581	0.563	3.1%
21	low			2.0/2.0			1	90	0.713	0.675	5.3%
24	low	OME	OME 1.8/2.4	2.0/2.0) 50% / 75%	high	2	90	0.586	0.563	3.9%

¹ MEA with "normal" loading is Anode 0.15 / Cathode 0.40 mg_{Pt}/cm². MEA with "low" loading is Anode 0.05 / Cathode 0.15 mg_{Pt}/cm². ² "CL" is the straight channel / land flow field, "OME" is the open metallic element flow field by Nuvera Fuel Cells Inc. ³ "low" means DT \approx 5°C. "high" means DT \approx 1°C

THE UNIVERSITY of

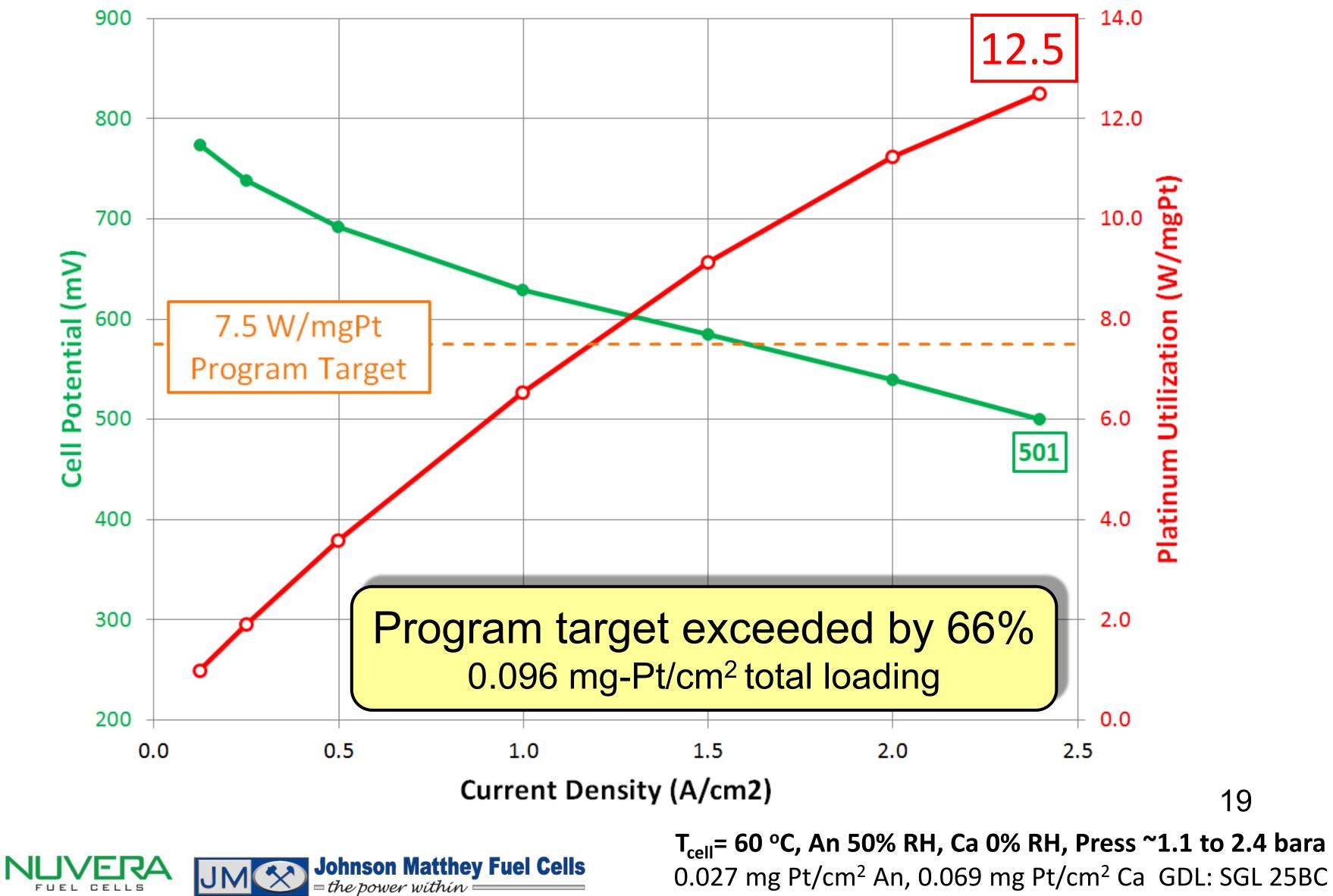
I ENNESSEE 🔰

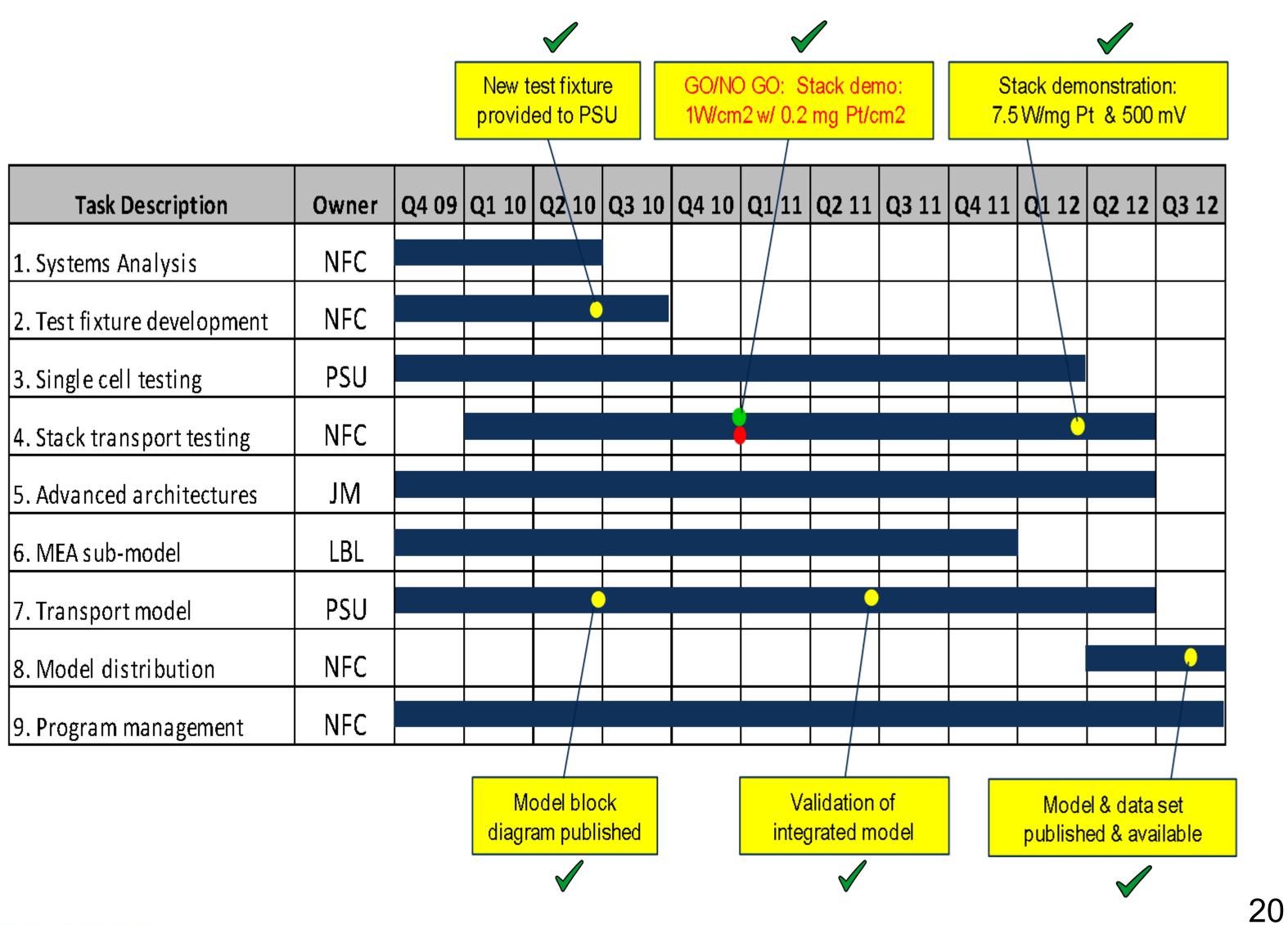
Model Validated with Low Pt Loading Electrode

Materials Roadmap - Completed

Material development aimed at reducing Pt loading and optimizing performance at high current densities is the key to the success of the program

Strategy	2010				2011				2012		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Pt Reduction on Standard Electrodes											
New Electrode Structures											
Graded Pt Loading Electrodes Further reduction in Pt Loading											
Thinner Membranes											
Low Equivalent Weight Ionomer in Electrode											
Novel MEA Architectures Improved Resistivity Membranes											




18

Materials Development Status

Demonstrated 12.5 W/mg-Pt at 501 mV on a 4 Cell Orion[®] Stack

Program Milestones - Approach The program has been completed, all the milestones have been met

Future work

The program has been successfully completed. Here are reported the opportunities for further studies based on the program findings

Existing gaps and needs:

- Water transport and management for low Pt loading electrodes
- GDL water transport physics and aging phenomena •
- Transport processes during start-up and shut down and their link to ulletperformance and durability
- Transport between and across interfaces and components ullet

Future ideas:

- Continue pursuing optimization of standard carbon supported electrodes as effective cost reduction strategy with the quickest path to production.
- Integrate existing performance and durability models together

Johnson Matthey Fuel Cells

the power within =

- Optimize GDL design for water transport to improve performance and durability ulletat high current density
- Pursue innovative GDL design as a way to implement a simpler architecture with higher performance in order to minimize cost.

21

Summary

- The AURORA program main goal was to achieve DOE cost targets by lacksquareusing a combination of high current density with low Pt loadings.
 - Program target was to demonstrate Platinum Utilization \geq 7.5W/mg-Pt
- A model capable of predicting high current density operation in different \bullet architectures was the central deliverable of the program.
 - Model predictions have been thoroughly validated with experiments in both open flow field and land-channel architectures
 - Model has been published and it is available to the FC Community ●
- Material development aimed at reducing Pt loading and optimizing \bullet performance at high current densities yielded to demonstration of Platinum Utilization = 12.5W/mg-Pt on full active area stack.
 - Result obtained exceeds Program Target by 66% ullet
- High temperature operation has been further explored and stable operation at \geq 95°C has been demonstrated in full format stack testing

