

Phase III Xlerator Program: Dimensionally Stable High Performance Membranes

Cortney Mittelsteadt, Ph.D. (P.I.) Castro Lacier, Ph.D. Avni Argun, Ph.D.

Giner, Inc. May 15, 2013

FC 036

Overview

Timeline

- Begin 10/01/2010
- End 02/28/2014
- <75% Complete

Budget

- Total project funding
 - DOE Share: \$1,552K
 - Cost Share: N/A
- Funding Received in FY11: \$491K (Year 1)
- Funding Received in FY12: \$409K (Year 2)
- Planned Funding for FY13-14: \$652K (Year 3)

Barriers addressed

- A. Durability
- B. Cost
- C. Performance

Technical Targets (DOE 2017 Targets)

- $0.02 \ \Omega.cm^2$ at 1.5 kPa H₂O Air inlet
- $<$20/m^2$
- > 5000 h lifetime, >20,000 RH Cycles

Partners

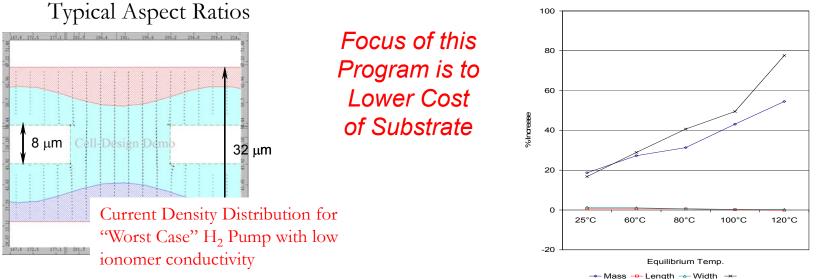
- UMass Amherst
- Impattern Technologies

Overview

- Why Dimensionally Stable Membranes (DSMTM)
- SBIR Phase III Xlerator Program and Year 2 Results
 - I. UV Microreplication
 - II. Mechanical Deformation
 - III. Inversion Casting
- Go/No-Go after each year
 - YEAR 1 Go/No-Go decision: Has scalable micro-molding method been generated to produce the desired DSMsTM?
 - YEAR 2 Go/No-Go decision: Does selected method generate DSMTM based MEAs that meet DOE targets for cost, performance and durability? Is it feasible to scale up the bench manufacturing process?

4

Overview: DSMTM - What We Know

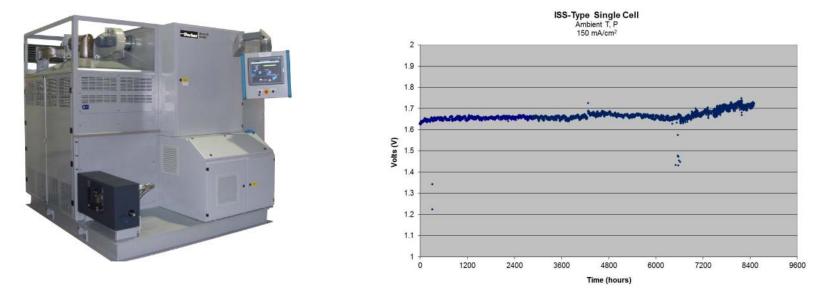

• DURABILITY

- Lack of Substrate Ionomer/Ionomer
 Interface does not lead to delamination
- FCTT RH Cycling Metric 20k Cycles
 80 C shown
- PERFORMANCE
 - Very Small "Blind Spot" Loss at Typical Aspect Ratios

- CONDUCTIVITY
 - 25-30% Penalty
 - (~50% for expanded PTFE)

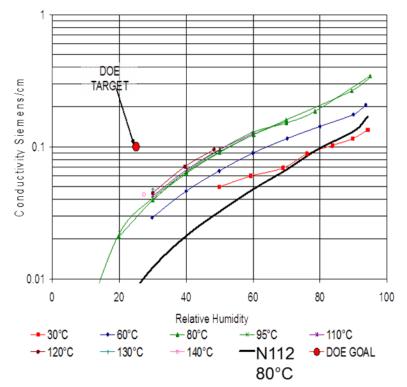
• DIMENSIONAL STABILITY

- Nearly Eliminates all x-y swelling



Overview: DSMTM - What We've Done

- Large Scale Electrolyzer for Energy Storage
 - 290 cm² Platform
 - World Best Efficiency @ 1500 mA/cm²
 - Confirmed by NREL


- NASA Life Support Electrolyzer
 - Operates at low RH
 - Floods on Shut-Down
 - >8000 hours
 - >6000 on/off cycles

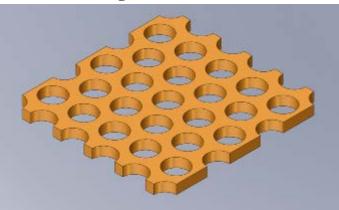
- Giner had the most *technical* success with two dimensional stable membranes
- Laser drilling approach is not practical due to cost
- Phase II program successfully showed pathway to obtaining these microporous supports in high-volume, low-cost processes
- Giner is already using DSMsTM with laser-drilled holes for manufacturing of large-scale electrolyzers.

Approach: Keys to 2D DSMTM

Total membrane thickness 12-25 μ m

Key aspect ratios:

Very close is better, but very difficult to manufacture


GINER

Approach: Criteria for DSMTM Manufacturing

- **Design:** 4-8 µm thick support structures with 8-20 µm diameter holes and 50% porosity to accommodate low EW ionomers.
- **Process:** Flexible materials with high tensile strength to handle in a roll-to-roll system without tearing and breaking.
- **Performance:** Negligible expansion in the XY plane and preserved modulus when exposed to wet/dry cycles.
- **Durability:** High durability to survive 20,000 wet/dry cycles without crack failure.
- Stability: High-temperature stability in the range of -30 to 120°C

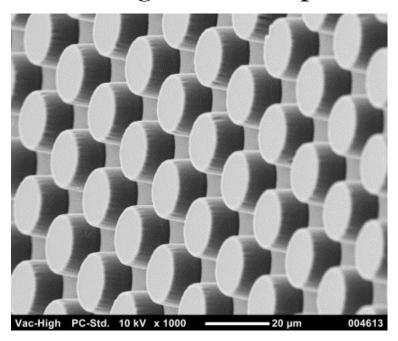
Optimal DSM[™] support design:

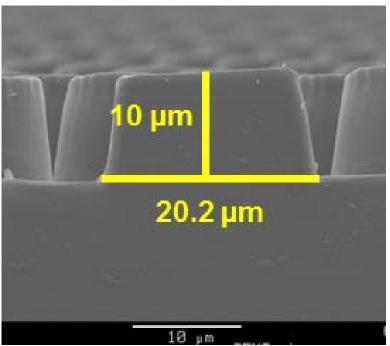
- Close hexagonal packing
- 4-8 μm thickness
- 20 μm hole diameter
- 50% open area

Achievements: Identification of Cost-Effective Pathways for DSMTM Fabrication

- Giner investigated various approaches in YEAR 1 and identified three scalable and cost-effective fabrication routes.
- DSMTM supports and composite DSMTM membranes were fabricated in YEAR 2 at 4" diameter pilot scale for validation of materials and refinement of processes.
- Giner actively pursued the following three fabrication routes:

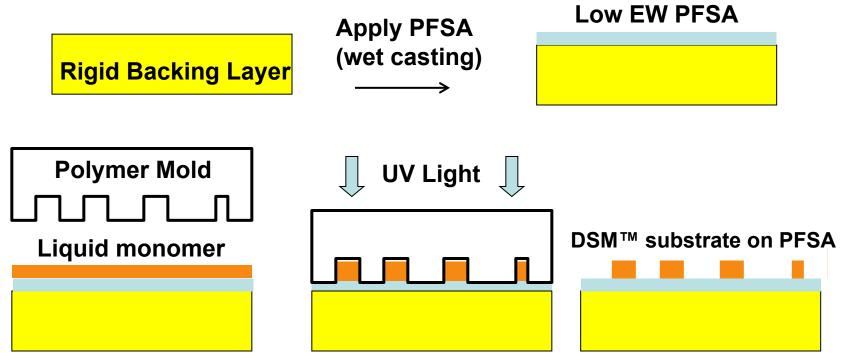
Technique	Description	Pros	Cons
I - UV Microreplication	UV curing of polymers between a mold and a backing substrate	 Rapid film formation Easy roll integration	High material riskR&D cost
II - Mechanical Deformation	Mechanical deformation via mold pillars	 Proven materials 	 Ragged features
III - Phase Inversion Solvent Casting	Precipitation of polymers on a mold using a non-solvent.	Well defined material	Waste solventFilm shrinkage


Each path starts with the same first step: Design of the mold



Achievements: UV Microreplication - Polymer Molds

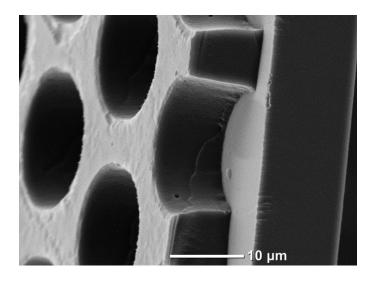
- High modulus polymer replica molds were fabricated at Umass-Amherst from nickel molds with hole patterns.
- Tilted and cross-sectional SEM views of mold pillars showing flawless replication.

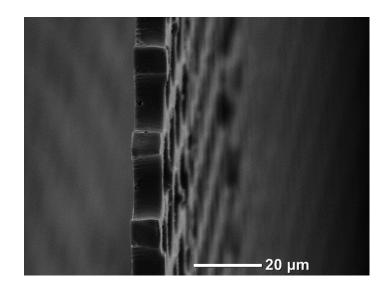


Achievements:

UV Microreplication-Processing

- In collaboration with UMass-Amherst, a state-of-the-art Nanonex Imprintor has been utilized for processing.
- DSMTM supports have been successfully fabricated and released from molds with minimal residual layers.

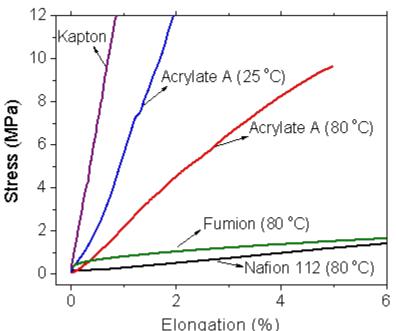




Achievements: UV Microreplication - Processing

• Upon optimization of the processing conditions such as wet monomer thickness, applied pressure, and imprint duration, it is possible to obtain 100% residual-layer free films

DSM[™] support formed on a low EW ionomer film.

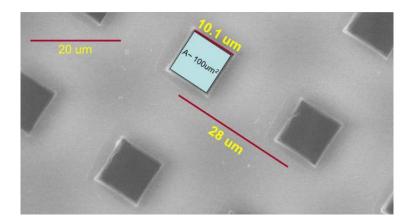

Free-standing DSM[™] support

Achievements: UV Microreplication -Materials

- After testing various UV-curable materials, a high strength acrylate resin was used to develop formulations to obtain optimized mechanical properties.
- Results were compared to a low EW ionomer that is incorporated into the microporous support.
- Fuel cell compatibility needs to be demonstrated

Polymer Film	Temp (C)	Tensile Strength (MPa)	Modulus (MPa)	Elongation at Break (%)
Nafion® 112 (110 EW)	80	6.08	21.36	94
Fumion® (FumaTech, 830EW)	25	5.68	29.64	23.59
	80	2.34	11.9	12.93
Acrylate A	25	>12	741.45	>1.63
	80	8.32	141.2	7.44
Acrylate A + Elastomer 1 (Formulation 1)	25	14.67	772.4	1.97
	80	13.6	91.66	19.03
Acrylate A + Elastomer 2 (Formulation 2)	25	>13.23	785.4	>1.71
	80	12.71	173	13.44

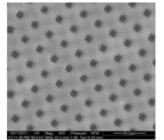
Kapton and Nafion are registered trademarks of E. I. du Pont de Nemours and Company. Fumion is a registered trademark of FuMA-Tech.



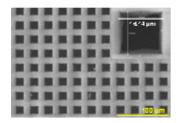
Achievements: Mechanical

- Best scalable route with proven materials; low projected cost in roll-to-roll
- Partnering with a micro fabrication "enabler" company to investigate fabrication of microporous DSMTM substrates
- Proven high volume continuous roll-to-roll manufacturing capability up to 1 m wide.

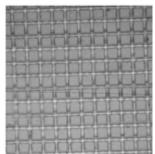
- Prior issues with severe (20°) tapering and low (13%) porosity.
- Close hexagonal packing of a micromold array will allow successful puncturing of thermoplastics with high porosity



Achievements: Mechanical

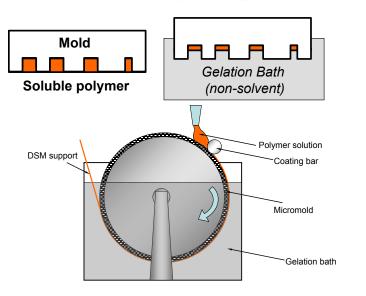

- Successfully opened holes on polysulfone films using the hot embossing method
- REACHED OUR 50% TARGET
 - Up from 15% 1 year ago and 35% 6 months ago
- Release from mold has also improved substantially
- The process favorably scales to roll-to-roll

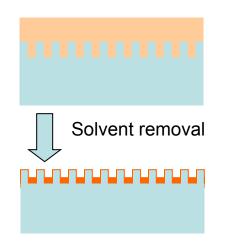
A square-row arrangement was cheaper for a trial run. Can move to hexagonal or circular pattern if needed


1/2012, ~15% porosity

8/2012, ~35% porosity

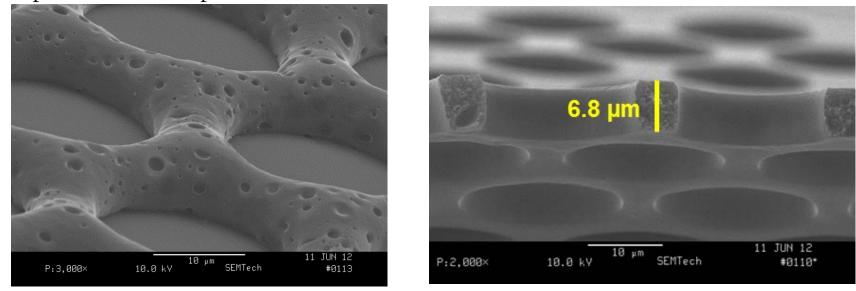
3/2013, ~50% porosity





Achievements: Phase Inversion Solvent Casting

- Investigating improvements over the Phase II program
- A polyethersulfone (PES) film solution cast on a micromold followed by its precipitation using a non-solvent



Achievements: Phase Inversion Solvent Casting

• Using a new material for pillar molds, a polysulfone DSM[™] support has been formed. High modulus of mold material provides better durability during the phase inversion process.

Cross-sectional view of a 7 µm thick polysulfone DSM[™] support. Note the microporosity of the inverted film.

Achievements:

Phase Inversion Solvent Casting

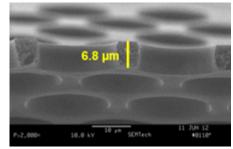
- Mechanical properties of inversion cast films are inferior to thermoformable counterparts due to microporosity. Annealing helps, but increased brittleness
- Due to the complications with solvent processing/removal, the need for postfabrication treatment, and non-ideal mechanical properties, we are no longer pursuing this approach

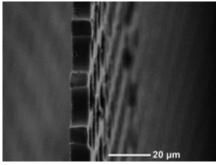
Mechanical properties In water, at 80°C	Tensile Strength (MPa)	Elastic Modulus (MPa)	Elongation at Break (%)
Kapton	231	1377	72
Nation 112	6.1	21.4	94.1
Polysulfone(UDEL)	36.8	710.9	19.1
PES (1.2 µm pores)	3.6	44.8	76.1
Inversion cast PES	3.5	94.4	35.8
Annealed PES	13.7	306.3	14.3

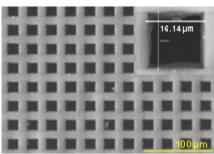
Kapton and Nafion are registered trademarks of E.I. du Pont de Nemours and Company

Collaborations

- The UMass- Amherst Nanoimprint Lithography Laboratory (Prof. Kenneth Carter)
- NIL Technology (Denmark)
- Impattern Technologies (Dr. Michael Watts)
- EV Group, Inc. (Garrett Oakes, North America Technology Director)
- Colorado Photopolymer Solutions (Dr. Neil Cramer) and the Bowman Research Group at CU Boulder






Summary

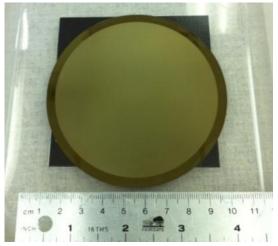
Three viable pathways were investigated in YEAR 2:

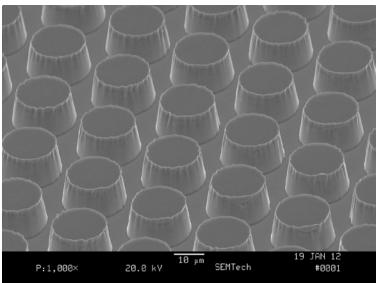
- Inversion Casting (Inactive)
 - Too many problems with process control
 - Intrinsic properties of inversion cast films are inferior
- UV Microreplication (Secondary Pursuit)
 - Lowest ultimate cost (< $20/m^2$)
 - Achieved desired material properties
 - Straight-forward scaling for the process
- Mechanical (Focus)
 - Best materials choices (thermoplastics)
 - Currently $50/m^2$, << for roll-to-roll
 - When high (50%) porosity is reached, this yields the best performing DSMsTM

Future Work

In YEAR 3, Giner will focus on evaluating the performance of DSMsTM under relevant fuel cell conditions as well as scalingup the manufacturing process. Goal will be to develop process as far as possible with suitable materials.

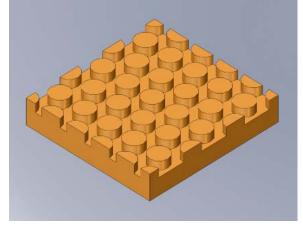
- We've completed the riskiest steps
 - Mold fabrication
 - Process demonstration to yield highly porous films
 - Material development
- Primary Focus is on Mechanical Method
- If this fails
 - Will pursue roll-to-roll UV-microfabrication at UMass Amherst
 - Will pursue batch scaling (12") with EV Group, Inc.

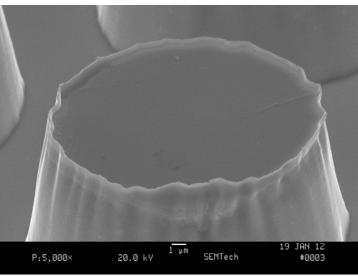

Technical Back-Up Slides

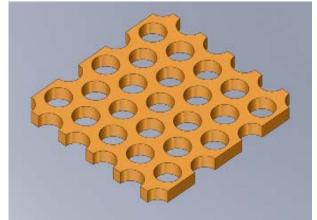


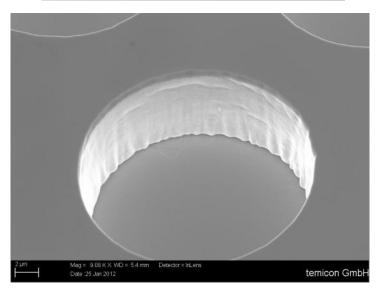
UV Microreplication: Nickel Shims

- NILT (Denmark) manufactured master and replica nickel molds
 - 4" diameter round molds replicated
 - $-20 \mu m$ diameter, $10 \mu m$ feature height, 50% density
 - Nickel shims (flat molds for prototypes)
- Easy to scale to 12" x 12"
- Easy to replicate using electroformed nickel shims

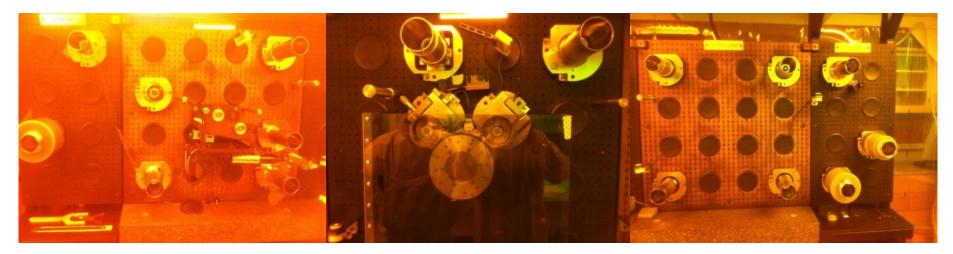





UV Microreplication: Nickel Shims


Nickel shims with 10 μ m high pillars

Nickel shim with 10 μm deep holes



UV Microreplication - Processing

- The use of roll-to-roll equipment at Umass-Amherst clean room facilities will allow for pilot demonstration.
- From left to right is shown the various sections of the setup used for coating, imprinting, and in-line analysis.

Unwind

Emboss

Metrology Rewind

FUTURE WORK

Comprehensive Membrane and Fuel Cell Testing

- Dimensional Changes in Water
- Mechanical Properties (In water, 80°C)
- Membrane Conductivity (Through-plane)
- Wet/Dry Cycling
- Freeze-Thaw Stability
- Fuel Cell Performance