

High Temperature Membrane with Humidification-Independent Cluster Structure

Ludwig Lipp FuelCell Energy, Inc. May 15th, 2013

Project ID # FC040

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Jun 2006
- Project end date: Dec 2013
- Percent complete: 92%

Budget

- Total project funding
 - DOE share: \$1600k
 - Cost share: \$641k
- Funding received in FY12: \$0
- Funding received in FY13: \$100k

Barriers

- A. Durability: Membrane and MEA durability
- C. Performance: High MEA performance at low RH & high T

Partners

- Giner, Inc.
 - Supported membrane fabrication and characterization
- Univ. of Central Florida
 - Membrane characterization, MEA fabrication & evaluation
- Oak Ridge National Lab
 - Membrane and additive microstructural characterization
- Polymer Partner
 - Polymer & membrane fabrication & characterization
- Additive Partners
 - Additives synthesis & characterization
- Consultants
 - Polymer, additives

Relevance

Overall Objective:

Develop mechanically stabilized membranes that meet the DOE performance, life and cost targets, including improved area specific resistance and durability at 95 to 120°C and low relative humidity (25-50%).

FY13 Obj.: Enhance durability using support polymer

Relevance

Development Objectives for Composite Membrane:

• Fabricate mC² membranes with polymer support structure

- Develop improved membrane polymer
- Develop membrane additives with high water retention (nano-zeolites)
- Develop membrane additives with high proton conductivity (superacids)
- Fabricate composite membranes (polymer + additives = mC²)
- Characterize supported membranes
- Scale-up considerations for cost reduction strategy
- Fabricate MEAs using promising membranes
- Characterize for chemical and mechanical stability

Approach: mC² Concept

Improvements Made:

- Introduced support polymer (2DSM[™]) from Giner, Inc.
- Lower EW (850 → 800-650)
 - Higher Molecular Wt.
- Chemically stabilized polymer
 - Smaller particle size (>80 → 30 nm)
 - Increased proton density
 (1 → 2 mobile protons per molecule) and lower cost

Multi-Component Composite Membrane (mC²) with Functionalized Additives

Approach

DOE pursued a wide variety of approaches for High Temperature PEMFC membranes:

									Micro/nano engineering	
	Morphology	Molecular Approach		ach	Additive Approach				approach	
Const and	Markarian	Other	Block	Rigid	ZOhanhata		7	~	Structured	Structured
Conduction Mechanism		Polymer	Copolymer	Roas	2n-nospnate	HPA	Zeolite	Other	Support	ionomer
Aqueous										
	FC-SO3H									
	HC-SO3H									
Hydrous Metal Oxides		s								
	sulfonyl imides									
Potential Non Aqueous										
	polyPOMs									
	Phosphates									
	Phosphonic acid									
	Phosphoric acids									
	Heterocyclic bases									
	lonic liquids									

Reference: John Kopasz, HTMWG Meeting May 18, 2009

Membranes

3M, Arkema, DuPont, Plug Power, LANL, ANL, NREL, SNL, Colorado School of Mines, Penn State, Virginia Tech, Giner, U of Tenn, Case Western Reserve U (2), FuelCell Energy, Clemson U, GE Global Research, Arizona State U, U of Central Florida

Reference: Nancy Garland, 2006 AMR FC0

Approach

Build on Giner's parallel DOE program to manufacture low-cost high-strength membrane support structures

DSM support design with 20 μm hole diameter and 50% open area

Reference: fc036_mittelsteadt_2012_o

uelCell Enerav

7

Approach

Target Parameter	DOE Target (2017)	Approach
Area specific proton resistance at:		Multi-component composite
120 <i>»</i> Ô and 40-80 kPa water partial pressure	$0.02 \ \Omega \ cm^2$	structure, lower EW, polymer support for thinner membrane
80°C and 25-45 kPa water partial pressure	$0.02 \ \Omega \ cm^2$	Higher number of functional groups
Hydrogen and oxygen cross-over at 1 atm	2 mA/cm ²	Support polymer for mechanically stronger membrane structure
Minimum electrical resistance	$1000 \ \Omega \ cm^2$	Improved membrane thickness tolerance and additive dispersion
Cost	20 \$/m ²	Simplify polymer processing
Durability Mechanical (Cycles with <10 sccm crossover hrs)	>20,000	Mechanically strong support polymer for reduced swelling
Durability Chemical (Cycles with <10 sccm crossover hrs)	>500	Chemically stabilized ionomer

Accomplishments - FY12

- High protonic conductivity 0.113 S/cm* (DOE Target: >0.1 S/cm)
- Low cross-over 0.3 mA/cm² * (DOE Target: <2 mA/cm²)
- Low electrical conductivity (high electrical resistance)
 2,860 Ωcm² * (DOE Target: >1000 Ωcm²)
- Transferred MEA Fabrication Technology to UCF
 - Easily fabricated into an MEA (in UCF's Experience)
- Good CCM performance 1247 mW/cm² at rated power* (DOE Target: >1000 mW/cm²)
- Good durability in UCF 11-day test protocol

Accomplishments: Area Specific Resistance

ASR almost meets the DOE target at 120°C and 50% RH

Accomplishments: mC² to MEA Development

Electrode Improvements Led to Higher Power

Accomplishments: MEA Comparison to DOE Targets

Characteristic	Units	Target 2017	B2	B3	B5	B7	B9	B10	NRE 211
Area specific proton resistance ^c at:									
120°C and 40 - 80 kPa pH ₂ O	Ohm cm ²	≤ 0.02	0.08*	0.08*	0.064*	0.23 *	0.110*	0.025*	0.15*
80°C and 25 - 45 kPa pH₂O	Ohm cm ²	≤ 0.02	0.02 [‡]	0.02 [‡]	0.016 [‡]	0.05 [‡]	0.045 [‡]	0.056 [‡]	0.02 [‡]
Maximum Hydrogen cross-over a	mA / cm ²	2	1	0.95	1.6	0.48	<0.4	0.3	0.76
Minimum electrical resistance b	Ohm cm ²	1000	1200	800	417	500	2,860	1,836	2100
Performance @ 0.8V (1/4 Power)	mA/cm ²	300	104	177	209	150	137	206	113
Performance @ rated power	mW/cm ²	1000	334	567	1239	482	577	1247	363

*Measured at 120°C and 70 kPa water partial pressure

^{*}Measured at 80°C and 38 kPa water partial pressure

a. Measure in humidified H_2/N_2 at 25°C

b. Measure in humidified H_2/N_2 using LSV curve from 0.4 to 0.6 V at 80°C

c. Determined by subtracting contact resistances from cell current interrupt values

Most targets met, good progress towards remaining targets

→ Incorporating support to reach remaining targets

Accomplishments - FY13: Supported Membrane Conductivity

Giner, Inc. 2DSM™ Support Polymer

Giner, Inc. 2DSM™ Composite Membrane cross-section

Initial sample fabricated successfully – conductivity promising

Collaborations

Prime

- FuelCell Energy, Inc. (Industry):
 - Leading fuel cell developer for over 40 years

Partners

- Giner, Inc.: Supported membrane fabrication and characterization
- University of Central Florida (University):
 - Membrane characterization, MEA fabrication & evaluation
- Scribner Associates, Inc. and BekkTech LLC (Industry):
 - Membrane through-plane and in-plane conductivity
- Oak Ridge National Lab (Federal Laboratory):
 - Membrane and additive microstructural and chemical characterization
- Polymer Company (Industry):
 - Polymer and membrane fabrication, initial characterization
- Additive Partners (Industry/University):
 - Additives synthesis, functionalization and characterization
- LGC Consultant LLC (Industry):
 - Additive synthesis and integration into mC²

Proposed Future Work

- Supported membrane fabrication: process improvements, ionomer optimization
- Ex-situ membrane characterization (dimensional stability, gas permeability, membrane conductivity as function of T and RH, mechanical properties)
- MEA testing: Meet ASR target of 0.02 Ω cm² at 120°C and 50% RH and cross-over target of 2 mA/cm2
- Complete mechanical and chemical stability characterization per DOE protocols
- 25 cm² cell testing for durability at 95°C and 120°C up to 1000 hrs

Progress Summary

- Developed technology to synthesize mC² components and to integrate them
- mC² exceeds DOE 120°C conductivity target at 50% RH and approaches ASR target
- Developed MEA fabrication process with UCF that is compatible with mC²
- Preliminary optimization of ionomer content in cathode led to good 120°C MEA performance of 510 mV at 1 A/cm², 35% RH (UCF)
- Cell data exceeds DOE power density target (UCF)
- Fabricated initial supported membrane samples

Project Summary Table

Characteristic	Units	DOE 2017 Target	FY12 Result
Area specific proton resistance at:			
120°C and 40-80 kPa water partial pressure ^c	Ohm cm ²	≤ 0.02	0.025
80°C and 25-45 kPa water partial pressure ^c	Ohm cm ²	≤ 0.02	0.016√
Maximum Hydrogen cross-over ^a	mA / cm ²	2	0.3 🗸
Minimum electrical resistance b	Ohm cm ²	1000	2,860 ✓
Performance @ 0.8V (1/4 Power)	mA / cm ²	300	209
Performance @ rated power	mW / cm ²	1000	1247 🗸

*Values are at 80°C unless otherwise noted

a. Measure in humidified H_2/N_2 at 25°C

b. Measure in humidified H_2/N_2 using LSV curve from 0.4 to 0.6 V at 80°C

c. Determined by subtracting contact resistances from cell current interrupt values

Acknowledgements

- DOE: Donna Ho, Greg Kleen, Tom Benjamin, Kathi Epping Martin, Jason Marcinkoski, Amy Manheim, Reg Tyler and John Kopasz
- Giner, Inc.: Cortney Mittelsteadt, Shelly Brawn (DSM fab. & charact.)
- UCF: Jim Fenton, Darlene Slattery, Marianne Rodgers, Paul Brooker, Nahid Mohajeri, Len Bonville, Russ Kunz (Testing protocols, membrane and MEA evaluation)
- Scribner Associates, Inc.: Kevin Cooper (Conductivity measurements)
- BekkTech LLC: Tim Bekkedahl (In-plane conductivity)
- ORNL: Kelly Perry, Karren More (Microstructural characterization)
- LGC Consultant LLC: Larry Christner
- FCE Team: Pinakin Patel, Ray Kopp, Jonathan Malwitz, Chao-Yi Yuh, Nikhil Jalani, Adam Franco, Al Tealdi

Technical Back-Up Slides

Accomplishments: mC² Performance Stability

Accomplishments: mC² Characterization

Relatively homogeneous dispersion of aggregated particles are observed in the membrane (#82) with a higher loading. The aggregated particles may have achieved a continuous 3-dimensional network.

Achieved good distribution of additives in mC²

Accomplishments: mC² Conductivity

Conductivity Milestone at 120°C has been Independently Validated

Accomplishments: Electrode Improvements

MEA performance as function of ionomer dry weight in the cathode electrode

* Corrected for Crossover H₂: Limiting current density in the Linear Sweep Voltammogram was deducted from the measured current densities in the polarization curves to isolate the effect of ionomer content in the cathode.

mC² Required Re-optimization of the MEA

Achieved High Performance at High Temp. and High Current Density

Accomplishments: Risk Resolution

Issues	Resolution		
Produce Stable Nanozeolites	Completed		
Produce Nanozeolite Superacid Composites	Completed		
Produce mC ² /Polymer Composites	Completed		
Increase Production Capacity of Nanozeolite	Completed		
Decrease Cost of Superacids	Completed		
Demonstrate Improved Conductivity	Completed		
Demonstrate Reproducibility of Select Systems	Completed		
Identify Best Slurry Compositions, Casting Substrates and Treatment Conditions that give Improved Conductivity	Completed		
In-cell characterization and durability	In progress		

