

Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells:

Morphological Simulations and Experimental Approaches

Silvia Wessel (PI) David Harvey Ballard Power Systems 16 May 2013

Project ID# FC049

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Date: January 2010
- End Date: March 2013
- Percent Complete: 99%

Barriers

A. Durability

- Pt/carbon-supports/catalyst layer
- B. Performance
- C. Cost (indirect)

Budget

- Total Project: \$6,010,181
 - \$ 4,672,851 DOE + FFDRC
 - \$ 1,337,330 Ballard
- Funding Received:
 - \$ 4,672,851 (Total)
 - > FY 2012: \$ 1,409,851

Project Partners

- Georgia Institute of Technology
- Los Alamos National Laboratory
- Michigan Technological University
- Queen's University
- University of New Mexico

Relevance and Objective

Objective

Identify/Verify Catalyst Degradation Mechanisms

- Pt dissolution, transport/ plating, carbon-support oxidation and corrosion, and ionomeric changes and conductivity loss
- Mechanism coupling, feedback, and acceleration

Correlate Catalyst Performance & Structural Changes

Catalyst layer morphology and composition; operational conditions
 Gas diffusion layer properties

• Develop Kinetic and Material Models for Aging

Macro-level unit cell degradation model, micro-scale catalyst layer degradation model, molecular dynamics degradation model of the platinum/carbon/ionomer interface

Develop Durability Windows

Operational conditions, component structural morphologies and compositions

Impact

- Increasing catalyst durability
 - Based on understanding of the effect of structure and operating conditions

DOE Technical Targets Electrocatalyst and Support

Electrocatalyst and Support Degradation Metric Target				
Polarization curve from 0 to >1.5 A/cm2** <30 mV loss at 0.8 A/cm2				
ECSA/Cyclic Voltammetry*** <a><40% loss of initial area				
Pt Dissolution Protocol: Triangle sweep cycle: 50 mV/s between 0.6 V and 1.0 V for 30,000 cycles. Single cell 25-50 cm ² , 80°C, H ₂ /N ₂ , 100/100%RH, ambient pressure Carbon Support Corrosion Protocol: Hold at 1.2 V for 24 h; run polarization curve and ECSA; repeat for total time of 400 hours, single cell 25-50 cm ² , 80°C, H ₂ /N ₂ , 100/100%RH, 150kPa (abs)				

** Polarization curve per Fuel Cell Tech Team Polarization Protocol

*** Sweep from 0.05 to 0.6V at 20mV/s, 80°C, 100% RH.

2020 Durability Targets

- Automotive Drive Cycle: 5000 hours
- CHP and Distributed Generation
 - $> 1 10 kW_e$: 60,000 hours
 - ➤ 100kW 3MW: 80,000 hours

Approach

Model Development

- 3 scale modeling approach
 - Molecular dynamics model of the Pt/ carbon/ionomer interface, Pt dissolution and transport process
 - Microstructural catalyst layer model to simulate the effect of local operational conditions and effective properties on performance and degradation
 - > Unit cell model predicting BOL performance and voltage degradation

Experimental Investigations/Characterization

- Systematic evaluation of performance loss, catalyst layer structural and compositional changes of different catalyst layer structures/compositions under a variety of operational conditions
 - > Carbon support type, Pt/C ratio, ionomer content, ionomer EW, catalyst loading
 - \succ Potential, RH, O₂ partial pressure, temperature
 - Accelerated stress tests (ASTs) combined with in-situ/ex-situ techniques
 - Performance loss breakdown to determine component contribution
 - In-situ/ex-situ characterization to quantify effect of electrode structure and composition on performance and durability

Develop Durability Windows

• Operational conditions, component structural morphologies and compositions

DOE Working Groups (Durability and Modeling)

• Interaction and data exchange with other projects

Approach Schematic

Milestones & Timeline FY 2012 to 2013

- Modeling Milestones
- Correlations Development Milestones
- □ Tools/Methodology Development Milestones

Deliverables (June 2013)

- Validated 1D-MEA Durability Model (OpenFoam) and documentation
- Correlations linking operational conditions, catalyst component properties, layer structure and composition with performance and degradation
- Durability Windows

2012/2013 Milestones

Model Development

- 1-D MEA Model
 - Pt dissolution
 - Linking platinum dissolution to multistep ORR (underway)
 - Pt-dissolution, agglomeration, formation of PITM (underway)
 - Carbon support oxidation/ corrosion
 > 2-stage pathway
 - Validation with AST cycling
 - Correlations and development of design windows
- Micro-structural Catalyst Model
 - Mass transport limitations and low loaded catalysts
 - Platinum dissolution, Carbon corrosion
- Molecular Dynamics Model

BALLARD

- Platinum dissolution within 3-phase interface
- Transport of Ptⁿ⁺ within membrane phase

Experimental Investigations

- Complete operational studies for carbon corrosion and platinum dissolution
 - Selected experimental studies for model development support
- Correlations and development of design windows

Collaborators Activities

- Complete chemical structural analysis of degraded catalyst layers/MEAs
- Capillary pressure measurements on catalyst layer
- Quantify interface changes in degraded MEAs X

 \checkmark = Completed, \checkmark = expected completion by end of project, X = Dropped

Summary of Technical Accomplishments

Completed Studies Operational Parameters

Summary of Operational Effect						
Stressor Evaluated	Testing Modifications BOT Performance		Mechanism Investigated	Degradation Rate		
Upper Potential (UPL)	0.9-1.6V (LSAC)*	Not Applicable	Pt Dissolution	Increases with UPL		
	0.9 - 1.4V (MSAC)**					
Lower potential Limit	0.1, 0.4, 0.6, 0.8 to 1.0V	Not Applicable	Pt Dissolution	Lower degradation @ LPL >0.6V		
Cycle Number	1.2 V, 0 to 4700 Cycles	Not Applicable	Mixed: Pt Dissolution, C-Corrosion	Increases with Cycling		
	1.4 V, 0 to 2100 Cycles		C-Corrosion	Increases with time at UPL		
Dwell Time	1.0V, 5 – 600 seconds	Not Applicable	Pt Dissolution	Increases with dwell time		
	1.4 V, 5-600 seconds		C-Corrosion	Increases with time at UPL		
Polativo Humidity	E00/ DH to Overestursted	Increases with PH	Pt Dissolution	Increases with RH		
Relative number			C-Corrosion			
Temperature	60-85 [°] C	Insignificant impact for loadings >0.2 mg/cm ² Pt	Pt Dissolution	Slight increase with T		
	60-85°C, 1.4V	≤0.2mg/cm ² Pt	C-Corrosion	Increases with T		
O ₂ Concentration	Air vs. N ₂	Not Applicable	Pt Dissolution	N ₂ (No PITM) < Air (PITM)		
	5% to 100%	Increases with O_2	Pt Dissolution	No impact		
H ₂ Concentration 20, 60, 100% H ₂ Not Applicable		Pt Dissolution	No Impact on rate Impact on PITM*** band location			

Standard AST: Air/H₂, 100% RH, 5 psig, 80°C, 0.6 V (30 sec) to 1.2V (60 sec), 4700 cycles **Pt Dissolution AST:** Air/H₂, 100% RH, 5 psig, 80°C, 0.6 V (30 sec) to 1.0 V (60 sec), 4700 cycles **C-Corrosion AST:** Air/H₂, 100% RH, 5 psig, 80°C, 0.6 V (30 sec)--> 1.4V (Time TBD), Cycles

* LSAC = Low surface area carbon support ** MSAC = Medium surface area carbon support *** PITM = Pt in the membrane

Reference MEA: 50:50 Pt/C, Nafion® ionomer, 0.4/0.1 mg/cm² (Cathode/anode), Ballard CCM, Nafion® NR211, BMP GDLs

Ballard Test Cell: 1D, 45cm² active area

Completed Studies Structure/Composition Parameters

Summary of Structure/Composition Effect					
Structure Evaluated Testing Modificatio		BOT Performance	Mechanism Investigated	Degradation Rate	
Catalyst Loading	0.05 - 0.5 mg/cm ² Pt	Decreases with loading < 0.2mg/cm ² Affected by RH, T and [O2] operation	Pt Dissolution C-Corrosion	Increases for loadings < 0.2 mg/cm ² Pt	
Carbon Ratio	30, 40, 50, 60, 80 Pt/C	No Impact (30-60 Pt/C) Decreases for Pt/C = 80	Pt Dissolution C-Corrosion	Decreases with Pt/C ratio (30 to 60)	
Carbon Support	LSAC50, MSAC50, Vulcan® 50, HSAC50 (1), HSAC50(2)Kinetic Loss: HSAC < MSAC < LSAC Performance: No trend		Pt Dissolution C-Corrosion	HSAC > MSAC >LSAC	
Carbon Support (Heat Treated Catalyst)	<u>1.0V UPL</u> HSAC50-HT(1), HSAC50- HT(2)	Decreases with HT	Pt Dissolution Pt Dissolution C-Corrosion	No significant Impact Improves with HT	
Ionomer Loading	Nafion [®] Content: 12, 23, 30, 38, 50%	Optimal @ 30%	Pt Dissolution C-Corrosion	Optimal @ 30%	
Ionomer EW	850-1100 EW	No Significant Impact	Pt Dissolution C-Corrosion	No significant Impact	
Impact of Membrane	Reinforced Membrane (1.2V&1.3V AST)	Similar to baseline	Pt Dissolution C-Corrosion	Similar wrt baseline Lower wrt baseline (1.3VAST)	
Catalyst Layer Process	1 and 8% crack area	similar	Pt Dissolution C-Corrosion Higher (1.3V AST)		
Impact of GDL-MPL	No MPL	Lower wrt baseline	Pt Dissolution C-Corrosion No Impact		
Standard AST: Air/H ₂ , 100% RH, 5 psig, 80 °C, 0.6 V (30 sec)> 1.2V (60 sec), 4700 cycles Pt Dissolution AST : Air/H ₂ , 100% RH, 5 psig, 80 °C, 0.6 V (30 sec)> 1.0 V (60 sec), 4700 cycles C-Corrosion AST: Air/H ₂ , 100% RH, 5 psig, 80 °C, 0.6 V (30 sec)> 1.4V (Time TBD), Cycles (TBD) LSAC = Low surface area carbon support MSAC = Medium surface area carbon support HSAC = High surface area carbon support HSAC = High surface area carbon support					
Ballard Test Cell: 1D, 45cm ² active area					

Correlations Structure \rightarrow Properties \rightarrow Performance

Interactions Flowchart

13

Smarter Solutions for a Clean Energy Future

Design Lever Example ECSA

Design Lever Example Thickness

Smarter Solutions for a Clean Energy Future

BALL

16 May 2013

Design Lever Example Effective Diffusivity

- Increase in ionomer content decreases porosity and diffusivity
 - Increase in mass transport losses (oxygen concentration effects)
 - CL Ionic losses increase due to reaction distribution shifting further into the catalyst layer

BOT and EOT Trends - Examples

- Performance correlates with ECSA of BOL and degraded catalyst layers
- The relationship between catalyst layer porosity and Nafion[®] volume% follows same trend for BOT and EOT catalyst layers

Catalyst Layer Component Properties Impact Matrix - Catalyst Layer Composition

Effect of Composition and Component Properties on Catalyst Layer Degradation

			Chang	Pt Diss e in Paramet	Carbon Corrosion		
Design Lever		Range Studied	ECSA Loss	Total Pt Loss	PITM	Pt growth	Catalyst Layer Thinning
mer	lonomer Content (1.2V UPL)	12 % to 50 %	48 to 70 %		0.02 to 0.16 mg/cm ²		
lond	lonomer Property: EW (1.2V UPL)	850 EW to 1050 EW					
Support*	Graphitic Content, Carbon Powder (Carbon Type Effect, 1.0V UPL)	49 % to 57 %		↓ 0.23 to 0.07 mg/cm ²	↓ 0.08 to 0.05 mg/cm²		↓ 38 to 15 %
Carbon \$	Graphitic Content, Carbon Powder (Carbon Type Effect, 1.2V UPL)	49 % to 57 %	↓ 94 to 62 %	↓ 0.28 to 0.10 mg/cm ²	↓ 0.11 to 0.06 mg/cm²	↓ 6.1 to 2.7 nm	↓ 69 to 18 %
L	Thickness Pt/C Ratio, 1.2V UPL)	9µm to 29µm	↓ 62 to <mark>52 %</mark>	↓ 0.09 to 0.05 mg/cm ²	0.09 to 0.05		
latinun	Pt Loading (Absolute Values) (1.2V UPL)	0.05 to 0.50 mg/cm ²	12 to 124 ECSA Units	0.09 to 0.07	0.03 to 0.07 mg/cm ²	↓ 4.2 to 2.8 nm	
–	Pt Loading (% Change Values) (1.2V UPL)	0.05 to 0.50 mg/cm ²	↓ 81 to 43 %	↓ 78 to 7 %	↓ 58 to 7 %	↓ 78 to 59 %	
her	MPL Effect (1.3V UPL)	Baseline vs. No Cathode MPL layer					
Otl	Membrane Effect (1.3V UPL)	N211 vs. Supplier A	↓ 88 to 69 %		0.09 to 0.07 mg/cm ²		↓ 71 to 59 %
* other parameters may also have an impact				Legend			
					Negligible Effect (within error)		
Λ	ADN° Smarter Solutions for a Clean Energy Future				<30% ECSA Loss or Thinning Variation		

Large Effect >30% ECSA Loss or Thinning Variation 16 May 2013

Degradation Effect Impact Matrix - Catalyst Layer Structure

Effect of Degradation on Catalyst Layer Structure / Properties and Polarization Losses

Degradation Mechanism		Composition / Component Property Affected	CL Structure Change CL Property Change		Polarization Loss Change	
Pt Dissolution	Pt Loss: PITM Washout	Pt Content ↓	Pt Depletion at Membrane /	ECSA ↓	Kinetic Loss	
	Pt Agglomeration	Pt Size	Catalyst Interface		CL Ionic Loss	
Carbon Degradation	Carbon Oxidation	Oxygen Species on Carbon Surface		lonomer Resistivity↓	Kinetic Loss \downarrow CL Ionic Loss \downarrow	
	Carbon Corrosion / Loss	Carbon Content ↓	Thickness ↓ Porosity ↓ Electronic Percolation* ↓ Ionomer Vol. Fraction Tortuosity	Diffusivity ↓ Electronic Resistivity*	Kinetic Loss CL Ionic Loss	
		Pt Content ↓		ECSA ↓	Kinetic Loss CL Ionic Loss	

* Hypothesis

Durability Windows Cathode Pt Loading (Pt50-LSAC Catalyst)

 A cathode Pt loading > 0.13mg/cm² and 0.21 mg/cm² is needed to ensure a < 15% performance loss after 2100 and 4700 AST cycles, respectively.

> AST: 0.6 (30sec)→1.2V (60 sec), 100% RH, 80°C Diagnostic Air Polarization: Air/H₂, 100% RH, 5 psig, 75°C

Durability Windows Ionomer Content (Pt50-LSAC Catalyst)

 A catalyst layer ionomer content of 23 to 40% would meet a durability target of 15% performance loss after 4700 AST cycles (30,000 DOE Pt dissolution cycles)

> AST: 0.6 (30sec) \rightarrow 1.2V (60 sec, 100% RH, 80C Diagnostic Air Polarization: Air/H₂, 100% RH, 5 psig, 75°C

Smarter Solutions for a Clean Energy Future

Durability Windows Upper Potential Limit (UPL)

LSAC Support, 0.4mg/cm² Pt Loading

- The time at UPL to 15% air performance loss increases exponentially with decreasing upper potential limit due carbon corrosion
- The time at UPL to 40% ECSA loss is linearly dependent on the UPL
- ~20x increase in lifetime by reducing UPL of 1.4V to 1.2 V

AST: 0.6 (30sec) \rightarrow UPL (60 sec), 100% RH, 80C Diagnostic Air Polarization: Air/H₂, 100% RH, 5 psig, 75°C

\LLARD

Durability Windows Temperature

LSAC Support, 0.4mg/cm² Pt Loading, 1.4V UPL

- The dependence on temperature follows an Arrhenius type behaviour under both wet (100%RH) and dry (50%RH) conditions
- ~15 times increase in lifetime at 1.4V UPL by reducing temperature from 90 to 60°C

BALLARD°

AST: 0.6 (30sec) \rightarrow 1.4V (600 sec), 4700 cycles, 100% RH, X°C Diagnostic Air Polarization (STC): Air/H₂, 100% RH, 5 psig, 75°C

Durability Windows Relative Humidity

100000 10000 Time to 15% Air Performance Loss (min) 1.2V 1.2V Time to 40% ECSA loss (min) 10000 Liquid Water Liquid 1000 Water 1.4V 1000 1.4V 100 100 40 120 120 60 80 100 140 40 60 80 100 140 Relative Humidity (During Voltage Cycling) (%) Relative Humidity (During Voltage Cycling) (%)

LSAC Support, 0.4mg/cm² Pt Loading, 1.4V UPL

Pt dissolution and corrosion increase with increasing RH (50%-100% RH)

~10 times increase in lifetime by reducing RH from 100% to 60% (1.2V UPL)

BALLARD

AST: 0.6 (30sec) \rightarrow 1.2V(60 sec) / 1.4V (600 sec), 4700 cycles, X% RH, 80C Diagnostic Air Polarization (STC): Air/H₂, 100% RH, 5 psig, 75°C

Durability Windows Carbon Support

AST Cycle Performance Loss at 1.2V UPL and 4700 cycles

Pt/C ratio of 50 wt% supported on low, medium, and high surface area carbon powders.

 Surface graphite content of ≥55% will meet a durability target of 15% performance loss.

> AST: 0.6 (30sec) \rightarrow 1.2V (60 sec), 100% RH, 80C Diagnostic Air Polarization: Air/H₂, 100% RH, 5 psig, 75°C

Unit Cell Model Framework

Open-source FC-PEM Performance and Durability Model

Open-source FC-PEM Package

- Developed in the Open-source package OpenFOAM®
- Beginning of Life Performance
 - Multi-step kinetics (HOR/ORR)
 - Modifiable Materials and Composition (statistical)
 - Modifiable Operating Conditions (statistical)
- Validation across operational conditions and material data sets (i.e. RH, T, loading, ionomer content etc.)

Open-source FC-PEM Performance and Durability Model

Open-source FC-PEM Package

Durability and AST Cycling Model

- Platinum Dissolution processes
 - Modified Pt Oxide Model
 - Dissolution Pathway adapted into multi-step pathway
- Carbon oxidation and corrosion
 - Two Surface Oxidation and Corrosion Steps
 - Layer collapse and composition change

Future Work Plan Forward to June 2013

Deliver 1D-MEA Model and Final Report

- OpenFoam[®] 1D MEA model codes, validation data, and model documentation
- Design curves and correlations linking cathode catalyst layer degradation with structure, composition and operational conditions
- Durability design windows

Organizations / Partners

Prime: Ballard Material Products/Ballard Power Systems

- S. Wessel, D. Harvey, V. Colbow
 - Lead: Micro-structural/MEA/Unit Cell modeling, AST correlations, characterization, durability windows
- Queen's University Fuel Cell Research Center K.Karan, J. Pharoah
 - Micro-structural Catalyst Layer/Unit Cell modeling, catalyst characterization

Georgia Institute of Technology S.S. Jang

• Molecular modeling of 3-phase interface & Pt dissolution/transport

Los Alamos National Laboratory

- R. Borup, R. Mukundan
 - Characterization of catalyst, MEA (NI)

Michigan Technological University

J. Allen, R. S. Yassar

BALLARD

- Capillary pressure and interface characterization, catalyst layer capillary pressure tool development
- University of New Mexico
 - P. Atanassov, K. Artyushkova
 - Carbon corrosion mechanism, characterization of catalyst powder/layers

30

Queen's University FCRC

Summary

Relevance

- Improved understanding of durability for fuel cell materials and components
- Recommendations for the mitigation of MEA degradation that facilitates achieving the stationary and automotive fuel cell targets

Approach

- Develop forward predictive MEA degradation model using a multi-scale approach
- Investigate degradation mechanisms and correlate degradation rates with catalyst microstructure, material properties, and cell operational conditions

Technical Accomplishments

- 1D-MEA degradation model, validated BOL simulations with experimental results for catalyst layer composition, structure and operational conditions
 - Validated Pt dissolution model using AST cycles
- Developed model for mixed Pt oxide formation from water and air for performance and Pt dissolution
- Correlated performance and voltage loss breakdown with cathode catalyst layer structure and composition and catalyst properties
- Developed catalyst layer durability windows and design curves

Collaborations

- Project team partners GIT, LANL, MTU, Queen's, UNM
- Participation in DOE Durability and Modeling Working Group

Acknowledgement

Thank you:

- Financial support from the U.S. DOE-EERE Fuel Cells Technology Program
- Support from project managers/advisor Kathi Epping Martin, David Peterson, and John Kopasz
- Project Collaborators

Technical Backup Slides

Project Applicability to Industry

Model Predictions of Performance & Degradation based on MEA Components, Composition, and Processing (Structure)

Smarter Solutions for a Clean Energy Future

State-of-the-Art Unit Cell

ID Test Hardware

- Bladder compression
- High flow rates
- Temperature control
 - Liquid cooling
- Carbon Composite Plates
 - Low pressure
 - Parallel flow fields
 - Designed for uniform flow
- Framed MEA

BALLARD

➢ 45 cm² active area

Reference MEA

- Pt Catalyst
 - Graphitized carbon-support
 - > 50:50 Pt/C ratio
 - Nafion[®] ionomer
- Catalyst Loading
 - Cathode/anode
 - > 0.4/0.1 mg/cm²
- Catalyst Coated Membrane
 - Ballard manufactured CCM
 - Nafion® NR211
- Gas diffusion layer
 - BMP Product
 - Continuous Process

Experimental Approach

Smarter Solutions for a Clean Energy Future

Pt Dissolution AST ComparisonBPS and DOE ProtocolsPrevious Results

- Low current density
 - Performance losses are very similar and consistent with predominately kinetic changes for both ASTs
 - ECSA and mass activity losses vs. cycle time are very similar between ASTs
- High current density
 - End of Test (EOT) performance loss at 0.8 A/cm2 is ~14mV for DOE AST and ~29mV for Ballard ASTs

BALLARD®	Smarter Solutions for a C	DOE AST: Triangle sweep @ 50 mV/s 0.6 V→1.0 V, 30,000 cycles, 80C, H2/N2, 100%RH, Ballard AST: Square wave @ 0.6 (30sec)→1.2V (60 sec), 4700 cycles, 80C, H2/Air, 100%RH	3
		Diagnostic Air Polarization: Air/H ₂ , 100% RH, 5 psig, 75°C	S

Ex-situ Characterization Component Structure/Property Changes

		Properties		Purpose	Technique		
	Carbon Support	 Structure/morphology Pore size distribution Surface species 			Model inputCorrelation dev.	• HRTEM (UNM) • BET (LANL/BPS) • XPS (UNM)	
	Catalyst Powder	 Pt crystallite size Porosity Pt size distribution Pt agglomerate size Surface species 			 Model input Dev. of correlations 	• XRD (BPS) • BET/MIP • HRTEM (UNM) (LANL/BPS) • HRTEM (UNM)• XPS (MTU)	
		Not Run	Conditioned	Degraded	Purpose	Technique	
	Membrane		Membran • Thick • PTIM	e Changes ness	 Determine if memb. degrades Model validation 	• SEM/EDX (BPS)	
MEA	EA GDL Water Management Chang • Capillary pressure • Contact angle • Surface energy/species • PSD		hanges	 Model input Determine if GDL degrades 	 Pseudo Hele-Shaw (MTU) Sessile Drop FTIR, X-ray Fluores. (LANL) MIP(BPS) 		
	Cathode Cat Layer	Structur Pt c Pt c Pore Craw Surr Surr Cap Elec Coh	re/ Property Cl rystallite size ontent, Thickne osity ck density, dept face species face roughness face roughness billary pressure ctrical conduction resive strength	hanges ess th and width vity	 Mechanism understanding Model input Model validation Structure/material properties - BOL/ EOL performance correlations 	 XRD (BPS) SEM/EDX (BPS) MIP/BET (BPS/LANL) SEM/FESEM (BPS/MTU) XPS (UNM) Laser Profiliometry (MTU) Hele-Shaw (MTU) cAFM (MTU) AFM (MTU)) 	
B CL/M	Iembrane terface	Structur • Coh • Che	ce/Property Ch sesive strength/a mical bond	anges adhesion	Model inputCorrelation dev.	• AFM (MTU) • Raman/FTIR (MTU)	