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Overview 

Project Partners 
 Georgia Institute of Technology 

 Los Alamos National Laboratory 

 Michigan Technological 
University 

 Queen’s University 

 University of New Mexico 

Timeline 

 Start Date: January 2010  

 End Date:  March 2013 

 Percent Complete:  99% 

Budget 
 Total Project: $6,010,181 

• $ 4,672,851 DOE + FFDRC 

• $ 1,337,330 Ballard 

 Funding Received:  
• $ 4,672,851 (Total) 

 FY 2012: $ 1,409,851  

Barriers 
A. Durability  

• Pt/carbon-supports/catalyst layer  

B. Performance  

C. Cost (indirect) 
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Relevance and Objective 

 Objective 
• Identify/Verify Catalyst Degradation Mechanisms  
 Pt dissolution, transport/ plating, carbon-support oxidation and 

corrosion, and ionomeric changes and conductivity loss 
Mechanism coupling, feedback, and acceleration 

• Correlate Catalyst Performance & Structural Changes  
Catalyst layer morphology and composition; operational conditions 
Gas diffusion layer properties 

• Develop Kinetic and Material Models for Aging   
Macro-level unit cell degradation model, micro-scale catalyst layer 

degradation model, molecular dynamics degradation model of the 
platinum/carbon/ionomer interface 

• Develop Durability Windows 
Operational conditions, component structural morphologies and 

compositions  
 Impact 

• Increasing catalyst durability  
 Based on understanding of the effect of structure and operating 

conditions 
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DOE Technical Targets 
Electrocatalyst and Support 

 2020 Durability Targets 
• Automotive Drive Cycle: 5000 hours 
• CHP and Distributed Generation 
 1 – 10kWe:  60,000 hours 
 100kW – 3MW: 80,000 hours 
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Metric Target 

Polarization curve from 0 to >1.5 A/cm2** <30 mV loss at 0.8 A/cm2 

ECSA/Cyclic Voltammetry*** <40% loss of initial area 

Electrocatalyst and Support Degradation 

Pt Dissolution Protocol: 
Triangle sweep cycle: 50 mV/s between 0.6 V and 1.0 V for 30,000 cycles. Single cell 25-50 cm2, 80oC, 
H2/N2, 100/100%RH, ambient pressure 
  Carbon Support Corrosion Protocol: 
Hold at 1.2 V for 24 h; run polarization curve and ECSA; repeat for total time of 400 hours,   
single cell 25-50 cm2, 80oC, H2/N2, 100/100%RH , 150kPa (abs) 

** Polarization curve per Fuel Cell Tech Team Polarization Protocol 
*** Sweep from 0.05 to 0.6V at 20mV/s, 80ºC, 100% RH. 



 Model Development 
• 3 scale modeling approach 

 Molecular dynamics model of the Pt/ carbon/ionomer interface, Pt dissolution and 
transport process 

 Microstructural catalyst layer model to simulate the effect of local operational 
conditions and effective properties on performance and degradation 

 Unit cell model predicting BOL performance and voltage degradation  

 Experimental Investigations/Characterization 
• Systematic evaluation of performance loss, catalyst layer structural and 

compositional changes of different catalyst layer structures/compositions 
under a variety of operational conditions 
 Carbon support type, Pt/C ratio, ionomer content, ionomer EW, catalyst loading  
 Potential, RH, O2 partial pressure, temperature 
 Accelerated stress tests (ASTs) combined with in-situ/ex-situ techniques  
 Performance loss breakdown to determine component contribution 
 In-situ/ex-situ characterization to quantify effect of electrode structure and 

composition on performance and durability 

 Develop Durability Windows 
• Operational conditions, component structural morphologies and compositions  

 DOE Working Groups (Durability and Modeling) 
• Interaction and data exchange with other projects 

Approach 
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Approach Schematic 

Design Curves 
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Milestones & Timeline 
FY 2012 to 2013 

 Deliverables (June 2013) 
• Validated 1D-MEA Durability Model (OpenFoam) and documentation 
• Correlations linking operational conditions, catalyst component properties, 

layer structure and composition with performance and degradation 
• Durability Windows 
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2012/2013 Milestones 

Model Development 
 1-D MEA Model 

• Pt dissolution 
Linking platinum dissolution to multi-

step ORR (underway) 
Pt-dissolution, agglomeration, 

formation of PITM (underway) 
• Carbon support oxidation/ corrosion 
2-stage pathway 

• Validation with AST cycling 
• Correlations and development of 

design windows 
 Micro-structural Catalyst Model 

• Mass transport limitations and low 
loaded catalysts 

• Platinum dissolution, Carbon 
corrosion 

 Molecular Dynamics Model  
• Platinum dissolution within 3-phase 

interface 
• Transport of Ptn+ within membrane 

phase 

Experimental Investigations 
 Complete operational studies for 

carbon corrosion and platinum 
dissolution 
• Selected experimental studies for 

model development support 
 Correlations and development of 

design windows 
 

Collaborators Activities 
 Complete chemical structural 

analysis of degraded catalyst 
layers/MEAs 
 Capillary pressure measurements 

on catalyst layer 
 Quantify interface changes in 

degraded MEAs 
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Summary of Technical 
Accomplishments 
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Completed Studies 
Operational Parameters  

0.9-1.6V (LSAC)* 

0.9 - 1.4V (MSAC)** 

Lower potential Limit 0.1, 0.4, 0.6, 0.8 to 1.0V Not Applicable Pt Dissolution Lower degradation @ LPL >0.6V 

1.2 V,   
0 to 4700 Cycles 

Mixed:  
Pt Dissolution,  
C-Corrosion 

Increases with Cycling 

1.4 V,   
0 to 2100 Cycles C-Corrosion  Increases with time at UPL 

1.0V, 5 – 600 seconds  Pt Dissolution Increases with dwell time 

1.4 V, 5-600 seconds C-Corrosion  Increases with time at UPL 

Pt Dissolution 

C-Corrosion  

60-85 
o 
C Pt Dissolution Slight increase with T 

60-85 o C, 1.4V C-Corrosion  Increases with T 

Air vs. N 2 Not Applicable Pt Dissolution N 2  (No PITM) < Air (PITM) 

5% to 100% Increases with O 2 Pt Dissolution No impact 

H2 Concentration 20, 60, 100% H 2 Not Applicable Pt Dissolution No Impact on rate 
Impact on PITM*** band location 

Ballard Test Cell:  1D,  45cm 2  active area 

O2 Concentration 

Temperature 

Insignificant impact for loadings  
>0.2 mg/cm2 Pt 

Decreases with T for loading  
 ≤0.2mg/cm2 Pt 

Relative Humidity 50%RH to Oversaturated Increases with RH Increases with RH 

Standard AST:  Air/H 2 , 100% RH, 5 psig, 80 o C, 0.6 V (30 sec) to 1.2V (60 sec), 4700 cycles  
Pt Dissolution AST : Air/H 2 , 100% RH, 5 psig, 80 o C, 0.6 V (30 sec) to 1.0 V (60 sec), 4700 cycles  
C-Corrosion AST:  Air/H 2 , 100% RH, 5 psig, 80 o C, 0.6 V (30 sec)--> 1.4V (Time TBD), Cycles 
Reference MEA:  50:50 Pt/C, Nafion ®  ionomer, 0.4/0.1 mg/cm 2  (Cathode/anode), Ballard CCM, Nafion® NR211, BMP GDLs  

Cycle Number 

Dwell Time 

Not Applicable 

Not Applicable 

Upper Potential (UPL) Pt Dissolution 
C-Corrosion  

Increases with UPL Not Applicable 

Summary of Operational Effect 
Stressor Evaluated Testing Modifications BOT Performance Mechanism  

Investigated Degradation Rate 

* LSAC   = Low surface area carbon support 
** MSAC = Medium surface area carbon support 
*** PITM = Pt in the membrane 



Completed Studies 
Structure/Composition Parameters 
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Catalyst Loading  0.05 - 0.5 mg/cm 2  Pt 

Decreases with loading  
< 0.2mg/cm 2 

Affected by RH, T and [O2]  
operation 

Pt Dissolution 
C-Corrosion  

Increases for loadings  
< 0.2 mg/cm 2  Pt 

Carbon Ratio 30, 40, 50, 60, 80 Pt/C  No Impact (30-60 Pt/C) 
Decreases for Pt/C = 80 

Pt Dissolution 
C-Corrosion  

Decreases with Pt/C ratio 
(30 to 60) 

LSAC50, MSAC50,  
Vulcan® 50,  
HSAC50 (1), HSAC50(2) 

Pt Dissolution 
C-Corrosion  HSAC > MSAC >LSAC 

1.0V UPL Pt Dissolution No significant Impact 
Carbon Support  
(Heat Treated Catalyst) 

HSAC50-HT(1), HSAC50- 
HT(2) Decreases with HT Pt Dissolution 

C-Corrosion  Improves with HT 

Ionomer Loading Nafion® Content: 
12, 23, 30, 38, 50%  Optimal @ 30% Pt Dissolution 

C-Corrosion  Optimal @ 30% 

Ionomer EW 850-1100 EW No Significant Impact Pt Dissolution 
C-Corrosion  No significant Impact 

Impact of Membrane Reinforced Membrane 
(1.2V&1.3V AST) Similar to baseline Pt Dissolution 

C-Corrosion  
Similar wrt baseline 
Lower wrt baseline (1.3VAST) 

Catalyst Layer 
Process  

1 and 8% crack area  similar Pt Dissolution 
C-Corrosion  

Similar 
8% cracked CCL substantially  
higher (1.3V AST) 

Impact of GDL-MPL No MPL Lower wrt baseline Pt Dissolution 
C-Corrosion  No Impact 

Standard AST:  Air/H 2 , 100% RH, 5 psig, 80 o C, 0.6 V (30 sec)--> 1.2V (60 sec), 4700 cycles  
Pt Dissolution AST : Air/H 2 , 100% RH, 5 psig, 80 o C, 0.6 V (30 sec)--> 1.0 V (60 sec), 4700 cycles  
C-Corrosion AST:  Air/H 2 , 100% RH, 5 psig, 80 o C, 0.6 V (30 sec)--> 1.4V (Time TBD), Cycles (TBD) 

Reference MEA:  50:50 Pt/C, Nafion ®  ionomer, 0.4/0.1 mg/cm 2  (Cathode/anode), Ballard CCM, Nafion® NR211, BMP GDLs  
Ballard Test Cell:  1D,  45cm 2  active area 

Carbon Support 
Kinetic Loss:  
HSAC < MSAC <  LSAC 
Performance: No trend 

Structure Evaluated Testing Modifications BOT Performance Mechanism  
Investigated Degradation Rate 

Summary of Structure/Composition Effect  

LSAC  = Low surface area carbon support 
MSAC = Medium surface area carbon 
support 
HSAC = High surface area carbon support 
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Interactions Flowchart 
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Design Lever Example 
ECSA 

 Kinetic loss and ECSA are 
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Design Lever Example  
Thickness 

 Catalyst layer ionic 
loss is a function of CL 
thickness and catalyst 
properties 
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Design Lever Example 
Effective Diffusivity 

 Increase in ionomer content decreases porosity and diffusivity   
• Increase in mass transport losses (oxygen concentration effects)   
• CL Ionic losses increase due to reaction distribution shifting further into the 

catalyst layer 
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BOT and EOT Trends - Examples 

 Performance correlates with ECSA of BOL and degraded catalyst 
layers 
 The relationship between catalyst layer porosity and Nafion® 

volume% follows same trend for BOT and EOT catalyst layers  
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Catalyst Layer Component Properties  
Impact Matrix - Catalyst Layer Composition 

Carbon  
Corrosion 

ECSA Loss Total Pt Loss PITM Pt growth 
Catalyst  
Layer 
Thinning 

Ionomer Content 
(1.2V UPL) 

  
12 % to 50 % 

 
48 to 70 % 

 0.02 to 0.16 
mg/cm2 

Ionomer Property: EW 
(1.2V UPL) 

  
850 EW to 1050 EW  

Graphitic Content, 
Carbon Powder 

(Carbon Type Effect, 1.0V UPL) 

  
49 % to 57 % 

↓ 
0.23 to 0.07  

mg/cm2 

↓ 
0.08 to 0.05 

 mg/cm2 

↓ 
38 to 15 % 

Graphitic Content,  
Carbon Powder 

(Carbon Type Effect, 1.2V UPL) 

  
49 % to 57 % 

↓ 
94 to 62 % 

↓ 
0.28 to 0.10 

mg/cm2 

↓ 
0.11 to 0.06 

mg/cm2 

↓ 
6.1 to 2.7 nm 

↓ 
69 to 18 % 

Thickness 
Pt/C Ratio, 1.2V UPL) 

  
9  µ m to 29  µ m 

↓ 
62 to 52 % 

↓ 
0.09 to 0.05 

mg/cm2 

↓ 0.09 to 0.05 
 mg/cm2 

Pt Loading 
(Absolute Values) 
(1.2V UPL) 

   12 to 124   
ECSA Units 

↓ 0.09 to 0.07 
mg/cm2 

 0.03 to 0.07 
 mg/cm2 

↓ 
4.2 to 2.8 nm 

Pt Loading 
(% Change Values) 
(1.2V UPL) 

  
0.05 to 0.50 mg/cm2 

↓ 
81 to 43 % 

↓ 
78 to 7 % 

↓ 
58 to 7 % 

↓ 
78 to 59 % 

MPL Effect  
(1.3V UPL) 

Baseline vs. 
No Cathode MPL layer 

Membrane Effect  
(1.3V UPL) 

N211 
vs. Supplier A 

↓ 
88 to 69 % 

↓ 0.09 to 0.07 
mg/cm2 

↓ 
71 to 59 % 

* other parameters may also have an impact 
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0.05 to 0.50 mg/cm2 

Small Effect  
<30% ECSA Loss or Thinning Variation 

Large Effect  
>30% ECSA Loss or Thinning Variation 

Negligible Effect (within error) 
Legend 



Degradation Effect  
Impact Matrix - Catalyst Layer Structure 
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Composition /  
Component Property  

Affected 
CL Structure Change CL Property Change Polarization Loss  

Change 

Pt Loss: 
PITM 

Washout 
Pt Content   ↓ 

Pt Agglomeration Pt Size    

Carbon Oxidation Oxygen Species on  
Carbon Surface     Ionomer Resistivity    ↓ Kinetic Loss    ↓ 

CL Ionic Loss    ↓ 

Carbon Content     ↓ 

Thickness   ↓ 
Porosity    ↓ 

Electronic Percolation*    ↓ 
Ionomer Vol. Fraction    

Tortuosity    

Diffusivity    ↓ 
Electronic Resistivity*     

Kinetic Loss     
CL Ionic Loss     

Pt Content   ↓ ECSA   ↓ Kinetic Loss     
CL Ionic Loss    

* Hypothesis 

Carbon Corrosion /  
Loss 

Pt Depletion at Membrane /  
Catalyst Interface   ECSA   ↓ Kinetic Loss     

CL Ionic Loss     

Effect of Degradation on Catalyst Layer Structure / Properties and Polarization Losses 

Degradation Mechanism 

Pt Dissolution 

Carbon  
Degradation 



Durability Windows 
Cathode Pt Loading (Pt50-LSAC Catalyst) 

 A cathode Pt loading > 0.13mg/cm2 and 0.21 mg/cm2 is needed to 
ensure a < 15% performance loss after 2100 and 4700 AST cycles, 
respectively. 
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AST: 0.6 (30sec)1.2V (60 sec), 100% RH, 80oC 
Diagnostic Air Polarization: Air/H2, 100% RH, 5 psig, 75°C 

15% Performance Loss 
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Durability Windows 
Ionomer Content (Pt50-LSAC Catalyst) 

 A catalyst layer ionomer content of 23 to 40% would meet a 
durability target of 15% performance loss after 4700 AST cycles 
(30,000 DOE Pt dissolution cycles)  

Performance  Loss at 1.2V UPL and 4700 cycles 
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15% Performance Loss 

AST: 0.6 (30sec)1.2V (60 sec, 100% RH, 80C 
Diagnostic Air Polarization: Air/H2, 100% RH, 5 psig, 75°C 



Durability Windows 
Upper Potential Limit (UPL) 

 The time at UPL to 15% air performance loss increases exponentially with 
decreasing upper potential limit due carbon corrosion 

 The time at UPL to 40% ECSA loss is linearly dependent on the UPL  
 ~20x increase in lifetime by reducing UPL of 1.4V to 1.2 V 

LSAC Support, 0.4mg/cm2 Pt Loading 

AST: 0.6 (30sec)UPL (60 sec), 100% RH, 80C 
Diagnostic Air Polarization: Air/H2, 100% RH, 5 psig, 75°C 
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Durability Windows 
Temperature 

 The dependence on temperature follows an Arrhenius type behaviour 
under both wet (100%RH) and dry (50%RH) conditions 

 ~15 times  increase in lifetime at 1.4V UPL by reducing temperature 
from 90 to 60oC 

LSAC Support, 0.4mg/cm2 Pt Loading, 1.4V UPL 

AST: 0.6 (30sec)  1.4V (600 sec), 4700 cycles, 100% RH, XoC 
Diagnostic Air Polarization (STC): Air/H2, 100% RH, 5 psig, 75°C 
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Durability Windows 
Relative Humidity  

LSAC Support, 0.4mg/cm2 Pt Loading, 1.4V UPL 

AST: 0.6 (30sec)  1.2V(60 sec) / 1.4V (600 sec), 4700 cycles, X% RH, 80C 
Diagnostic Air Polarization (STC): Air/H2, 100% RH, 5 psig, 75°C 
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 Pt dissolution and corrosion increase with increasing RH (50%-100% RH) 
 ~10 times increase in lifetime by reducing RH from 100% to 60% (1.2V UPL) 



Durability Windows 
Carbon Support 

 Surface graphite content of ≥55% will meet a durability target of 
15% performance loss. 

AST Cycle Performance  Loss at 1.2V UPL and 4700 cycles 

Pt/C ratio of 50 wt% 
supported on low, 
medium, and high 
surface area carbon 
powders. 
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AST: 0.6 (30sec)1.2V (60 sec), 100% RH, 80C 
Diagnostic Air Polarization: Air/H2, 100% RH, 5 psig, 75°C 

0

200

400

600

800

1000

48 50 52 54 56 58
Cgr, Carbon Powder XPS (%)

B
O

T 
Pe

rf
or

m
an

ce
, 1

A
/c

m
2  (m

V)

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 L
os

s,
 1

A
/c

m
2  (%

)
EC

SA
 L

os
s 

(%
)

BOT Performance
 ECSA Loss
Performance Loss

15% Performance 
Loss 



• Sub structure 
• water-filled  
• ionomer filled  

• Effectiveness factor in the volume 
of the structure 

Unit Cell Model Framework 

Discrete Catalyst Model: Agglomerate Catalyst Model: 

• No sub structure 
• Effective properties only 
• Gas transport in bulk 

pores 
• Utilization through layer 

C_Ch 

A_Ch 

C_GDL 

C_CL 
MEM 
A_CL 

A_GDL 

Transport Equation Summary: 
• Charge transport (electrons and protons) 

•  Ohm`s Law 
• Gas transport (H2, O2, N2, and H2O) 

•  Mixture-based Fickian approach 
• Dissolved water transport (membrane and catalyst) 
• Energy transport (Ohmic heating, entropic waste heat) 

•  Conductive transport 
• Liquid water transport  

•  Capillary driven with phase change 

Assumptions 

• Membrane is impermeable 
• Channel flow is uniform from 

channel to channel 
• Channel flow along the length 

has constant composition 
• Pressure drop along the cell is 

negligible 
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Open-source FC-PEM  
Performance and Durability Model 

Open-source FC-PEM Package 
 Developed in the Open-source 

package OpenFOAM® 
 Beginning of Life Performance 

• Multi-step kinetics (HOR/ORR) 
• Modifiable Materials and Composition 

(statistical) 
• Modifiable Operating Conditions 

(statistical) 
 Validation across operational 

conditions and material data sets (i.e. 
RH, T, loading, ionomer content etc.) 

Geometry Mesh  
Generation 

Material 
Transport  
Properties 

Solver  
Modules 

Parametric 
 Setup 

Post 
Processing Performance User  

Inputs 

Electrochemistry 

Degradation 
Physics 

Transport  
Physics 



Open-source FC-PEM  
Performance and Durability Model 
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Open-source FC-PEM Package 
 Durability and AST Cycling Model 

• Platinum Dissolution processes 
• Modified Pt Oxide Model 
• Dissolution Pathway adapted into 

multi-step pathway 
• Carbon oxidation and corrosion 

• Two Surface Oxidation and 
Corrosion Steps 

• Layer collapse and composition 
change 



Future Work 
Plan Forward to June 2013 

 Deliver 1D-MEA Model and Final Report  

• OpenFoam® 1D MEA model codes, validation data, and 
model documentation 

• Design curves and correlations linking cathode catalyst 
layer degradation with structure, composition and 
operational conditions    

• Durability design windows  
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Organizations /Partners 

 Prime: Ballard Material Products/Ballard Power Systems           
 S. Wessel, D. Harvey, V. Colbow 

• Lead: Micro-structural/MEA/Unit Cell modeling, AST correlations, 
characterization, durability windows 

 Queen’s University – Fuel Cell Research Center  
 K.Karan, J. Pharoah 

• Micro-structural Catalyst Layer/Unit Cell modeling, catalyst 
characterization 

 Georgia Institute of Technology  
 S.S. Jang 

• Molecular modeling of 3-phase interface & Pt dissolution/transport 
 Los Alamos National Laboratory 
 R. Borup, R. Mukundan 

• Characterization of catalyst, MEA (NI)  
 Michigan Technological University  
 J. Allen, R. S. Yassar 

• Capillary pressure and interface characterization, catalyst layer 
capillary pressure tool development  

 University of New Mexico  
 P. Atanassov, K. Artyushkova 

• Carbon corrosion mechanism, characterization of catalyst 
powder/layers 
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Queen’s University 
FCRC 

Georgia Institute  
of Technology 



 Relevance  
• Improved understanding of durability for fuel cell materials and components  
• Recommendations for the mitigation of MEA degradation that facilitates 

achieving the stationary and automotive fuel cell targets   
 Approach   

• Develop forward predictive MEA degradation model using a multi-scale 
approach 

• Investigate degradation mechanisms and correlate degradation rates with 
catalyst microstructure, material properties, and cell operational conditions 

 Technical Accomplishments 
• 1D-MEA degradation model, validated BOL simulations with experimental 

results for catalyst layer composition, structure and operational conditions 
 Validated Pt dissolution model using AST cycles 

• Developed model for mixed Pt oxide formation from water and air for 
performance and Pt dissolution 

• Correlated performance and voltage loss breakdown with cathode catalyst 
layer structure and composition and catalyst properties 

• Developed catalyst layer durability windows and design curves 
 Collaborations 

• Project team partners GIT, LANL, MTU, Queen’s, UNM 
• Participation in DOE Durability and Modeling Working Group 

Summary 
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Project Applicability to Industry 

Model Predictions of Performance & Degradation based on  
MEA Components, Composition, and  Processing (Structure) 

Operating 
Conditions 
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Cat. Powder 
 BET SA 
 Mass activity 
 ECA 

Catalyst Layer 
 Mass activity 
 ECSA 
 Utilization 
 Thickness 
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 Capillary pressure 
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Membrane 
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 Thickness 

GDL 
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 Diffusivity 
 Porosity 
 Capillary Press. 
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   Vol. fractions 

Plate 
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 Geometry 

BOL Performance 

 
 

 

 ECSA 
 Exchange current density 
 Tafel slope 
 Mass activity 
 HFR 

Predicted Voltage 
Degradation 

Parametric 
Performance Study 
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 State-of-the-Art Unit Cell  

 

 Reference MEA 
• Pt Catalyst 
 Graphitized carbon-support 
 50:50 Pt/C ratio  
 Nafion® ionomer 

• Catalyst Loading 
 Cathode/anode  
 0.4/0.1 mg/cm2  

• Catalyst Coated Membrane  
• Ballard manufactured CCM 

• Nafion® NR211  
• Gas diffusion layer  
 BMP Product 
 Continuous Process 

 

 1D Test Hardware 
• Bladder compression 
• High flow rates  

• Temperature control  
 Liquid cooling 

• Carbon Composite Plates 
 Low pressure  
 Parallel flow fields 
 Designed for uniform flow 

• Framed MEA  
 45 cm2 active area  
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Experimental Approach 

MEA In-situ diagnostics* 
 H2/Air Polarization  

Performance 
Limiting current 

 H2/O2 polarization  
V-loss break-down: Kinetic, Ohmic, Mass Transport 

 Cyclic Voltametry  
CO stripping 
ECSA 
Double layer charging current 
H2 cross-over 
Pt surface understanding 

 Electrochemical Impedance Spectroscopy (EIS)  
Cell resistance 
Ionomer resistance 
Double layer charging current 

 Mass and specific activity 

Ex-situ Diagnostics* 
 SEM: Catalyst/membrane thickness 
 SEM/EDX: Pt content in membrane 

and catalyst layer 
 XRD: Pt crystallite size and orientation 
 BPS Diagnostic Tool  
 Voltage Loss Breakdown (Kinetic Loss) 
 Limiting Current 

Selected  
BOT/EOT 

Samples for 
Collaborators 

* Ongoing 
evaluation, i.e. 
list of 
diagnostics 
may change 

Reference AST: Air/H2, 100% RH, 5 psig, 80oC, 
0.6 V (30 sec) 1.2V (60 sec), 4700 cycles 
Reference MEA:50:50 Pt/C, Nafion® ionomer, 
0.4/0.1 mg/cm2 (Cathode/anode), Ballard CCM, 
Nafion® NR211, BMP GDLs 
Ballard 1D Test Cell, 45cm2 active area 

BOT 

AST  
Testing 

Conditioning 

MOT x 

MOT 1 

EOT 

Selected MEA 
Components for 
Collaborators 

BOT/MOT/EOT = Beginning/Mid/End of Test 



 Low current density 
• Performance losses are very similar and consistent with predominately 

kinetic changes for both ASTs 
• ECSA and mass activity losses vs. cycle time are very similar between ASTs 

 High current density 
• End of Test (EOT) performance loss at 0.8 A/cm2 is ~14mV for DOE AST and 

~29mV for Ballard ASTs 

Pt Dissolution AST Comparison  
BPS and DOE Protocols 
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DOE AST: Triangle sweep @ 50 mV/s 0.6 V1.0 V, 30,000 cycles, 80C, H2/N2, 100%RH,  
Ballard AST: Square wave @ 0.6 (30sec)1.2V (60 sec), 4700 cycles, 80C, H2/Air, 100%RH 
Diagnostic Air Polarization: Air/H2, 100% RH, 5 psig, 75°C 

Previous Results 
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Ex-situ Characterization  
Component Structure/Property Changes 

Technique 

• SEM/EDX (BPS) 

• Pseudo Hele-Shaw (MTU) 
• Sessile Drop  
• FTIR, X-ray Fluores. (LANL) 
• MIP(BPS) 

• XRD (BPS) 
• SEM/EDX (BPS) 
• MIP/BET (BPS/LANL) 
• SEM/FESEM (BPS/MTU) 
• XPS (UNM) 
• Laser Profiliometry (MTU) 
• Hele-Shaw (MTU) 
• cAFM (MTU) 
• AFM (MTU)) 

 

Technique 
• HRTEM (UNM) 
• BET (LANL/BPS) 
• XPS (UNM) 
• XRD (BPS) 
• HRTEM (UNM) 
• HRTEM (UNM) 

• BET/MIP 
(LANL/BPS) 

• XPS (MTU) 

• AFM (MTU) 
• Raman/FTIR (MTU) 

Purpose 

Purpose 

MEA GDL 

Cathode 
Cat Layer 

Membrane 

Catalyst 
Powder 

Carbon 
Support 

CL/Membrane 
Interface 

Not Run Conditioned Degraded 
Membrane Changes 

• Thickness 
• PTIM 

Water Management Changes 
• Capillary pressure 
• Contact angle 
• Surface energy/species 
• PSD 

Structure/ Property Changes 
• Pt crystallite size 
• Pt content, Thickness 
• Porosity  
• Crack density, depth and width 
• Surface species  
• Surface roughness  
• Capillary pressure  
• Electrical conductivity 
• Cohesive strength  

Properties 

• Pt crystallite size 
• Pt size distribution 
• Pt agglomerate size 

• Porosity 
• Pore size distribution 
• Surface species 

Structure/Property Changes 
• Cohesive strength/adhesion 
• Chemical bond 

• Structure/morphology 
• Pore size distribution 
• Surface species 

• Model input 
• Correlation dev. 
• Model input 
• Dev. of 

correlations 

• Determine  if 
memb. degrades 

• Model validation 

• Model input 
• Determine if 

GDL degrades  

• Mechanism 
understanding 

• Model input 
• Model validation 
• Structure/material 

properties - BOL/ 
EOL performance 
correlations  

• Model input 
• Correlation dev. 
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