The Effect of Airborne Contaminants on Fuel Cell Performance and Durability

Jean St-Pierre (PI)

Michael Angelo (presenter)

University of Hawaii – Manoa, Hawaii Natural Energy Institute

May 14, 2013

Project ID # FC065

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: April 1, 2010
- Project end date: March 31, 2014
- Percent complete: 75 %

Budget

- Total project funding
 - DOE share: \$3,649,116
 - Contractor share: \$917,762
- Funding received in FY12: \$ 400,000
- Funding for FY13: \$ 997,742

Barriers

- Durability
 - 5000 drive cycle h by 2015 (automotive system)
- Performance
 - 50 % energy efficiency at rated power (automotive system)

Partners (subcontractors)

- University of Connecticut, Center for Clean Energy Engineering, UTC Power, Ballard Power Systems
- Project lead: Jean St-Pierre

Relevance

Project objective: Identification and mitigation of the airborne contaminants adversely impacting system performance and durability

- Preventive: provide contaminants and tolerance limits for filter specifications
- Recovery: identification of fuel cell stack's material, design, operation or maintenance changes to remove contaminant species and recover performance

2012-2013 objective: Establish degradation mechanisms for key contaminants

	Table 3.4.3 Technical Targets for Automotive Applications: 80-kW _e (net) Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen ^a									
	Characteristic	Units	2011 Status	2017 Targets	2020 Targets					
Г	Energy efficiency ^b @ 25% of rated power	%	59	60	60					
	Power density	W/L	400°	650	850					
	Specific power	W / kg	400°	650	650					
	Cost ^d	\$ / kW _e	49 ^e	30	30					
	Cold start-up time to 50% of rated power @–20°C ambient temp @+20°C ambient temp	seconds seconds	20 ^f <10	30 5	30 5	-				
	Start up and shut down energy ^g from -20°C ambient temp from +20°C ambient temp	MJ MJ	7.5	5 1	5 1					
┥	Durability in automotive drive cycle	hours	2,500 ^h	5,000 ⁱ	5,000 ⁱ					
	Assisted start from low temperatures ⁱ	°C	-	-40	-40					
	Unassisted start from low temperatures ⁱ	°C	-20 ^f	-30	-30					

Project targets

Approach

Milestone or Go/No-Go Decision	Status	Due Date
M1: Prioritize a group of ~10 airborne contaminants of	Completed with industry	March 2011
relevance to stationary and automotive fuel cell	recommendations for contaminant	
applications	selection and tests for 11 organic species	
M2: Quantify performance loss for at least 4 different	Completed with 7 organic and 1 cation	March 2012
contaminants under various operating conditions	species for selected contaminant	
	concentration, temperature and current	
	density ranges	
G1: Identified contaminants (and concentrations)	G1: Completed with 7 organic species	March 2012
resulting in performance loss ≥ 20 % of initial	tests by varying the contamination	
performance loss	concentration to achieve $<$ and $> 20 \%$	
	performance loss	
G2: Effects of various conditions on cell poisoning	G2: Completed with tests performed	
quantified. Data reported to modelers	under different temperatures, contaminant,	
	concentrations and current densities	
G3: Mitigation strategies, restoring cell to 90 % of initial	G3: Completed with 7 organic species by	
performance, identified for reversible contaminants	varying operating conditions	
M3: Quantify spatial variability of performance loss for	Ongoing tests with 7 organic and 1 cation	March 2013
at least 4 different contaminants. Identify principal	(slides 8, 9, 11-16, 26, 28)	
poisoning mechanism for same		
M4: Demonstrate successful mitigation of the impact of		March 2014
the most important 4 airborne contaminants		

Approach

Approach

- Selected contaminants integrate with other research
 - The limited scope of previous airborne contaminants studies, mostly SO_x , NO_x and NH_3 , is not duplicated
 - Extensive outreach was conducted by contacting, interfacing and following contaminant selection recommendations from the industry
 - This project fills the knowledge gap in airborne contaminants and complements former hydrogen contaminants and ongoing system contaminants projects
 - Project ID # FC048 focuses on fuel cell system materials sources
 - Fuel contaminants were studied in previous projects (ID # FC045, FC046, FC047)

- The performance loss due to organic species and a cation under different operating conditions was partially reported at the 2012 AMR with remaining results included in slides 22-24 (milestone 2)
- New PEMFC contamination mechanism results are reported in the following slides with a focus on acetylene, a common welding fuel (milestone 3)
- Other contamination mechanism results are summarized in slides 26 and 28
- Contamination mechanisms will provide the background necessary to facilitate the development of mitigation strategies (milestone 4)

Contaminant	Acetonitrile (CH ₃ CN)	Acetylene (C ₂ H ₂)	Bromomethane (CH ₃ Br)	Iso-propanol (C ₃ H ₈ O)	Methyl methacrylate (CH ₂ C(CH ₃)COOCH ₃)	Naphthalene $(C_{10}H_8)$	Propene (C ₃ H ₆)	$\begin{array}{c} Ca^{+2} \\ (Ca-Cl_2 \text{ or} \\ -SO_4) \end{array}$
Source	Solvent and chemical intermediate	Welding fuel and chemical intermediate	Fumigant	Solvent, chemical intermediate, and windshield de-icer	Synthesis precursor for poly(methyl methacrylate), a shatter-resistant alternative to glass	Model aromatic, chemical intermediate and fumigant	Synthesis precursor for polypropylene used for films, packaging, etc	Road de- icer, desiccant, fertilizer and soil conditioner

- Milestone 2 database includes data obtained with 7 contaminants, 7 operating condition cases and varying times (>490 impedance spectra)
 - Impedance data were fitted to a common electrical equivalent circuit to extract kinetic, ohmic and mass transfer resistances
 - Depicted acetonitrile example shows kinetic, ohmic and mass transfer resistance increases
 -0.3 DC: 1 A/cm², AC perturbation: 15 mA/cm² Freq:10 kHz-0.1 Hz, 10 pt/dec

- Contamination effects were separated (1st iteration) into different types
 - All 7 airborne contaminants increased charge and mass transfer resistances
 - Acetonitrile, acetylene, bromomethane, iso-propanol, methyl methacrylate (MMA), naphthalene, propene
 - Only acetonitrile increased the high frequency resistance
 - Multi-step recovery procedures may be needed
- Tests were completed or planned to understand in more detail the origin of these different losses (2nd iteration)

- For the contamination mechanism 2nd iteration, measurement methods are used that probe all performance loss types
 - Kinetic: rotating ring/disc electrode or RRDE (1)
 - Ohmic: membrane conductivity cell (2)
 - Mass transfer: residence time distribution or RTD (liquid water volume change)
 - All types: segmented fuel cell (3) and single fuel cell with gas chromatography (4)
- A lower catalyst loading of 0.1 rather than 0.4 mg Pt/cm² was also investigated to assess commercially relevant materials
- Acetylene (a common welding fuel) results are shown as example (slides 11-16)

- Acetylene (a common welding fuel) impacts both catalyst active area and oxygen reduction mechanism reducing performance and durability
 - Reduced catalyst area and performance due to acetylene adsorption
 - Increased peroxide formation, an oxygen reduction side reaction, and faster membrane backbone attack
 - After recovery, the oxygen reduction current is largely regained but a significant catalyst surface area loss and peroxide formation rate gain remain

- Acetylene (500 ppm, a common welding fuel) minimally impacts membrane conductivity with a 1-2 % change as measured by chronopotentiometry, cyclic voltammetry and impedance spectroscopy
- Results correlate well with fuel cell normalized high frequency resistance data (slide 9)

- Acetylene (a common welding fuel) causes a current redistribution due to the gradual adsorption on both catalyst surface and carbon (catalyst support, sub-layer, gas diffusion layer)
- Localized higher current densities (lower electrode potentials), temperatures and peroxide production rate may accelerate catalyst and ionomer degradation

- Acetylene (a common welding fuel) oxidizes yielding CO and CO₂ products
 - At 0.85 V vs H_2 electrode, ~100 % acetylene conversion
 - At 0.67 V vs H_2 electrode, ~50 % acetylene conversion
 - At 0.55 V vs H₂ electrode, <1 % acetylene conversion
- In spite of the presence of acetylene oxidation, the significant contaminant effect on fuel cell performance remains supporting the development of filtering system specifications

- Acetylene (a common welding fuel) contamination mechanism proposed
- Mass transfer loss validation is planned with residence time distribution
 measurements of liquid water in the gas diffusion layer

15

 A lower catalyst loading is substantially more affected (7000 % increase in voltage loss) by the presence of acetylene (a common welding fuel) supporting the development of filtering system specifications

- A transient cation transport model is being developed to support experimental data interpretation because kinetic and mass transfer as well as ohmic losses occur due to cation accumulation at the ionomer interface
- Mathematical models were also derived for contaminants dissolving in water without or with subsequent dissolution reactions
 - Contaminant entrainment in liquid water reduces the contaminant concentration suggesting the use of an effective value for performance data correlations

Collaborations

- Project team members (all within the DOE fuel cells program)
 - Hawaii Natural Energy Institute (prime university organization, focus on airborne contaminants)
 - University of Connecticut Center for Clean Energy Engineering (university sub-contractor, focus on foreign cations)
 - UTC Power and Ballard Power Systems (industry sub-contractors, consulting role)
- Other collaborators
 - Air composition and filter specification definition support (Nuvera, ClearEdge Power)
 - Air filters for analysis (GM, Nuvera, UTC Power)
 - Nebulizer design and integration support (GM)
 - Heating tube for contaminant evaporation (GM)
 - Membrane contamination by a chemically and electrochemically inactive species model support and validation data (GM)
 - Mutual support including activities overlap avoidance (project ID # FC048)
 - Requested contaminants for validation (LANL, NREL, ANL, FCHEA, NRL, SAE, NIST, Praxair, Air Liquide, Air Products, Carrier, CaFCP, CaSFCC, EPA, NCAR, Nuvera, CARB, AFCC, NASA, NEDO/JARI)
 - DOE durability working group
 - Metallic bipolar plates to study interactions with contaminants (Treadstone Technologies)
 - RRDE, membrane conductivity cell and residence time distribution apparatus use (ONR)

Proposed Future Work

- Fiscal year 2013
 - Milestone 3: Quantify spatial variability of performance loss for at least 4 different contaminants. Identify principal poisoning mechanism for same (March 31, 2013)
 - Complete experiments supporting the elucidation of contamination mechanisms for the 7 organic and 1 cation species
 - Rotating/ring disc electrode, conductivity cell, residence time distribution, segmented fuel cell, single fuel cell coupled with gas chromatography, etc
 - Analyze, summarize and disseminate the large database to industry to support the development of filter specifications
 - Initiate the development of mitigation strategies for catalysts, ionomers and gas diffusion layers based on potential changes, fluid circulation including product water and established contamination mechanisms
- Fiscal year 2014
 - Investigate long term operation with contaminants to determine the impact of increased peroxide generation and induced changes over active area (current distribution, etc)
 - Determine the impact of a contaminant mixture with concentrations closer to atmospheric values with a 0.1 mg Pt cm⁻² loading
 - Milestone 4: Demonstrate successful mitigation of the impact of the most important 4 airborne contaminants (March 31, 2014)

Summary

- Relevance
 - Performance and durability impacts are mitigated by providing input into filter specifications (slide 24) and, fuel cell material selection, design, operation or maintenance
- Approach
 - Document operating conditions effects on contamination with in situ tests
 - Determine contamination mechanisms with extensive in situ and ex situ measurements
 - Develop mitigation strategies based on potential changes, fluid circulation and mechanisms
- Technical accomplishments and progress
 - Contamination mechanisms for airborne contaminants and a cation
 - Airborne contaminants effects were separated into different resistance types
 - Acetylene contamination mechanism proposed and development for all other contaminants is ongoing
 - Catalyst loading sensitivity established for 4 airborne contaminants
 - Commissioning of custom residence time distribution apparatus (ONR award)
 - Cation transport and liquid water scavenging mathematical models for data interpretation and mechanism development
- Collaborations
 - Multi-faceted interactions with team organizations, project ID # FC048, consumers, suppliers, the DOE durability working group and an interest group including fuel cell industries add relevance to activities
- Proposed future work
 - Development of mitigation strategies for catalysts, ionomers and gas diffusion layers

20

Technical Backup Slides

21

Milestone 2 Results

- The steady state effect of selected airborne contaminants as a function of operating conditions was summarized
 - Acetonitrile (CH₃CN), acetylene (C₂H₂), bromomethane (CH₃Br), iso-propanol (C₃H₈O), methyl methacrylate (MMA, CH₂C(CH₃)COOCH₃), naphthalene (C₁₀H₈), propene (C₃H₆)
- <u>The effect of operating conditions is generally similar for all airborne</u> contaminants with the bromomethane temperature effect as an <u>exception</u>

Milestone 2 Results

- <u>The effect of calcium sulfate CaSO₄ (Ca⁺² is the cation of CaCl₂</u> ٠ de-icing agent) as a function of operating conditions was summarized and does not reach a 20 % loss
 - Higher concentrations are worse
 - ~80 mV in 100 hours at 10 ppm (5.7 mM CaSO₄ and 130 μL/min)
 - \sim 7 mV in 100 hours at 2 ppm (1.14 mM CaSO₄ and 130 µL/min)
 - Lower current densities are worse
 - Salt precipitation near the cathode outlet due to increased water loss to anode
 - At 0.2A cm⁻², cells cannot reach 100 operating hours with CaSO₁ injection

Effect of operating conditions on ΔV (100 hours) and rate of resistance increase (current interrupt)

Contaminant 1 Acm ⁻² 2 ppm		1 Acm ⁻² 5 ppm	1 Acm ⁻² 5 ppm 1 Acm ⁻² 10 ppm		0.2 Acm ^{−2} 5 ppm
	((0 m))	40.07.mm)/	75.07.001/	16 51 m)/	122 22 COF 0
CaSO₄	6.69 mV 17.8 μΩ cm²/h	49.07 mV 102.1 μΩ cm²/h	75.87 mV 98.7 μΩ cm²/h	16.51 mV 51.9 μΩ cm²/h	123.32-685.9 μV/h 0-1135.4 μΩ cm²/h

Milestone 2 Results

- <u>Tolerance limits were established for selected contaminants and filter</u> specifications using semi-empirical relations
 - For 0.4 mg Pt cm⁻² and a steady state reached within 5000 h
 - Confidence level varies
 - High (green), medium (yellow) and low (red)
- <u>A similar analysis needs to be completed for</u> the other operating conditions (*i*, *T*)

$\frac{V_{ss,c}}{V_{ss,0}} =$	$1 - \frac{1}{1 + a}$	Contaminant	Predicted contaminant tolerance <i>c</i> (ppm)			Experimental contaminant concentration range (ppm)	Derimental Empirical correlation para Itaminant centration age (ppm)		
55,0	$1 + \frac{a^{bc}}{a^{bc}} = 1$		$V_{\rm ss,c}/V_{\rm ss,0}=0.95$	$V_{\rm ss,c}/V_{\rm ss,0}=0.99$	$V_{\rm ss,c}/V_{\rm ss,0}$ =0.995		a	b	r^2
	e -1	Acetonitrile	<mark>1.7</mark>	<mark>0.33</mark>	<mark>0.16</mark>	2-100	9.03 x 10 ⁻⁵	2.80×10^{-6}	0.995
IZ	_1 1	Acetylene	<mark>210</mark>	<mark>170</mark>	<mark>158</mark>	20-500	611000	0.0507	0.994
V _{ss,c}		Bromomethane	5.7 x 10 ⁻⁶	$1.1 \ge 10^{-9}$	$3.0 \ge 10^{-11}$	2-20	1.84	0.193	0.995
\overline{V}	-1-	Iso-propanol	4200	<mark>800</mark>	<mark>400</mark>	250-8600	8.53 x 10 ⁻⁵	1.07 x 10 ⁻⁹	0.857
ss,0	$1 + \frac{a}{c^b}$	Methyl methacrylate	<mark>9.9</mark>	<mark>1.9</mark>	<mark>0.95</mark>	2-100	4.03 x 10 ⁻⁶	2.13 x 10 ⁻⁸	0.988
	-	Naphthalene	<mark>0.63</mark>	0.21	0.12	0.5-2.4	59.2	2.26	0.987
		Propene	23	<mark>4.5</mark>	2.2	2-100	6.86 x 10 ⁻⁶	$1.56 \ge 10^{-8}$	0.978
	HNEI Hawai'i Natural I	Energy Institut					BALL	.ARD	24

Milestone 2 Added Scope

- Two fuel cell system materials cleaning agents were identified
 - Acetone effect is small and <20 mV for 5-175 ppm and 0.2-1 A cm⁻²
 - Citric acid effect has not been determined
- Application relevant heat transfer fluids have been included
 - HFC-152a and HFC-134a were included for airborne contaminants screening
 - Ethylene glycol was used for the ionomer contamination by an uncharged species model validation

Milestone 3 Results

 Measurements aimed at probing performance loss types for selected airborne contaminants so far indicate significant decreases in key fuel cell material parameters

Contaminant	Kinetic current (% loss in air at 30 °C and 0.9 V vs RHE)	Electrochemical catalyst area (% loss in N ₂ at 30 °C)	H ₂ O ₂ current (% gain in air at 30 °C and 0.5 V vs RHE) ¹	Membrane conductivity (% loss at 80 °C and 50 % relative humidity)	GDE water content	Dimensionless local current (maximum % loss and gain in air at 80 °C)	Contaminant conversion (% in air at 80 °C) ²	Cell voltage loss (% gain for a Pt loading reduction of 0.4 to 0.1 mg cm ⁻² in air at 80 °C)
Acetonitrile	85 (16.9 mM)	>60 (16.9 mM)	130 (16.9 mM)	0 (100 ppm)	TBD	TBD	TBD	77 (20 ppm)
Acetylene	100 (4030 ppm)	>90 (4040 ppm)	601 to 1027 (4030 ppm)	1-2 (500 ppm)	TBD	-17 to 18 (300 ppm)	0.8 to 100 for 0.55 to 0.85 V vs H ₂ (300 ppm)	7004 (100 ppm)
Bromomethane	TBD	TBD	TBD	-	TBD	TBD	TBD	TBD
Iso-propanol	TBD	TBD	TBD	-	TBD	TBD	TBD	TBD
Methyl methacrylate	72 (1 mM)	65 (1 mM)	350 to 491 (1 mM)	-	TBD	TBD	49 to 57 for 0.55 to 0.68 V vs H ₂ (20 ppm)	129 (20 ppm)
Naphthalene	TBD	TBD	TBD	-	TBD	TBD	TBD	TBD
Propene	52.6 (1010 ppm)	38 (1010 ppm)	604 (1010 ppm)	-	TBD	-8 to 6 (100 ppm)	43 to 62 for 0.55 to 0.73 V vs H ₂ (100 ppm)	257 (100 ppm)

¹ In spite of a large peroxide production rate increase, the total current is still mostly due to oxygen reduction

² In all cases, observed products include the unaltered contaminant, CO and CO₂