

Large Scale Testing, Demonstration, and Commercialization of Fuel Cell Coolant (SBIR Phase III)

Satish Mohapatra (PI) Dynalene Inc. Whitehall, PA

May 14, 2013

FC077

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

SBIR Phase III: Large Scale Testing, Demonstration, & Commercialization of Fuel Cell Coolant						
	Total Project Funding	DOE Share: \$1.016 M Planned FY13: 216,311				
	Timeline	Project start date : Oct 1 st , 2010 Project end date: Sep 30 st , 2013 80% Complete				
	Barriers Addressed	System Thermal Management Durability, Cost, & Performance				
	Collaborations	Protonex Technology Corporation University of Tennessee, Knoxville More than 15 Fuel Cell Companies				

Relevance: Coolant Durability

DOE SBIR Phase III Project

DOE Barriers	Dynalene Inc.				
A. Durability	 Understand the coolant durability requirements by working with different fuel cell types developed by various fuel cell manufacturers 				
	 Coolant Durability: Maintains low electrical conductivity and other thermo-physical properties for over 5,000 operating hours 				
	 Coolant Compatibility: Acceptable to be used with typical fuel cell components 				

Relevance: Coolant Cost

DOE SBIR Phase III Project

DOE Barriers Dynalene Inc.

B. Cost
 Understand what the cost of coolant should be relative to current automotive coolants

Projected Selling Price of Coolant as Production Scaled Up					
Small Scale (55 gal batches)	\$45/gal				
Medium Scale (1,000 gal batches)	\$30/gal				
Pilot Scale (5,000 gal batches)	\$15-25/gal				
Full Scale (>100,000 gal/year)	\$10-15/gal				

Relevance: Coolant Performance

DOE SBIR Phase III Project							
DOE Barriers		Dynalene Inc.					
C. Performance	Coolant Criterion	Description	Value				
	Electrical Conductivity	Electrically conductive coolants reduce the performance of a fuel cell	< 2 µS/cm				
	Boiling Point	Similar to current automotive coolants	> 100°C				
	Freezing Point	Must be freeze-tolerant under extremely cold conditions	< -40°C				
	Thermal Conductivity	Higher is better for heat transfer	> 0.4 W/mK				
	Viscosity	Lower is better for heat transfer and pumping	< 1 cP at 80°C				
	Specific Heat	Higher is better for heat transfer	> 3 kJ/kgK				
	Cost/Toxicity/Flammability	Current automotive coolant	Similar				

5

Approach: Coolant Characteristics

	Dynalene FC	Dynalene LC			
Composition	 Glycol-water base fluid Nanoparticle & non-ionic corrosion inhibitor additive package 	 Glycol-water base fluid Non-ionic corrosion inhibitor package (no nanoparticles) 			
Performance	 Both fluids are non-flammable and non-toxic Physical and thermo-physical properties similar to typical automotive coolant Superior heat transfer performance compared to non-aqueous fluids 				
Low Electrical Conductivity	 Low electrical conductivity maintained by two mechanisms: 1. Nanoparticles: Ion-scavenging in the working coolant 2. Non-Ionic Corrosion Inhibitors: Ion- suppression at the wall of the coolant channel 	 Low electrical conductivity maintained by one mechanism: 1. Non-Ionic Corrosion Inhibitors: Ion-suppression at the wall of the coolant channel 			

How do Dynalene FC & LC Work?

DYNALENE

7

FY 2013 DOE Annual Review Meeting // FC077

Approach: Dynalene FC/LC Advantages in PEM Fuel Cell

Fuel Cell Criteria	Water/Glycol Loop	Dynalene FC Loop	Dynalene LC Loop
De-ionizing Filter	Required	Not required	Optional
Pressure Drop	Higher	Lowest	Lower
Maintenance	Higher	Lowest	Lower
Clogging	Higher	Lowest	Lower
Weight	Heavier	Lightest	Lighter
Corrosion	More likely	Less likely	Less likely

Approach: Background

- Fuel cell coolant development began in 2000 and was patented in 2006
- Expectations
 - Low electrical conductivity over 5,000 hours of operation
 - Exceptional thermo-physical properties similar to current automotive coolant
- SBIR Phase I and Phase II (2004 2007)
 - Provided a good recipe for a coolant fluid that demonstrated low electrical conductivity in short term tests.
- DOE Scale-up Grant (2009 2011)
 - Provided the ability to manufacture Dynalene FC in batches of 5,000 gallons.
- SBIR Phase III (2010-2013)
 - 5,000 hour validation of coolant in working fuel cell systems
 - Validating the efficiency of the corrosion inhibition abilities of the Dynalene FC

9

Approach: Phase III Key Milestones

Timeline	Objective	Status
June 2011	Design and fabricate test equipment (Dynalene, Inc., Protonex, University of Tennessee)	Completed
Sept 2013	Validate corrosion inhibitors in 5,000 hour tests (Dynalene, Inc.)	60% Completed
Sept 2012	Produce nanoparticles with at least 500 μeq/g (Dynalene, Inc.)	Completed
Sept 2013	Experimentally validate 5,000 hour coolant durability (Dynalene, Inc., Protonex, University of Tennessee)	Ongoing

Year 1 Decision Gate	Fabrication of the test equipment (Cleared)
Year 2 Decision Gate	Corrosion inhibitors validated in short term tests and nanoparticles optimized for surface charge

Approach: Tasks & Schedule

						Quarters	After Co	ontract Av	ward				
		1	2	3	4	5	6	7	8	9	10	11	12
TASK 1	Develop Instrumented Fuel Cell System	TASK	1										
TASK 2	Experimental Qualification of Coolant Properties and Performance						T.	ASK 2					
TASK 3	Determine Corrosion Inhibiton Efficiency of the Coolant		TAS	КЗ									
TASK 4	Increase Surface Charge of Nanoparticles						TASK 4						
TASK 5	Long-Term Testing and Demonstrations						TASK 5						
	Reporting	•	•	•	•	•	•	•	•	•	•	•	•

Approach: Tasks

Task 1:Development of an Experimental Test Rig to Simulate Ion Contamination in FuelCellSystem (University of Tennessee, Knoxville)

- Perform material compatibility tests to ensure best materials for test system
- Build test rig with coolant loop using FC compatible materials, automotive radiator, and voltage controlled metallic fuel cell coolant channels
- Task 2:Investigation of Coolant Performance in Fuel Cell System Environment (University
of Tennessee, Knoxville)
 - Determine effects of voltage, temperature, time, surfactant, and nanoparticles on performance of coolant
 - Investigate non-organic contaminants in tested fluids

Task 3: Determine Corrosion Inhibition Efficiency of Coolant (Dynalene)

- Material compatibility test, immersion test, electrochemical test, and electron microscopy
- Further development of non-ionic corrosion inhibitors
- 5,000 hour testing

Approach: Tasks

Task 4: Increase Surface Charge of the Nanoparticles (Dynalene)

- Target is 500 µeq/g
- Achieved greater than 800 μ eq/g

Task 5: Long-Term Testing and Demonstration (Protonex & Dynalene)

- Protonex system at the Dynalene site
- Dynalene will start 5,000 hour testing on selected coolant formulations

Accomplishments: Surface Charge Increase

Accomplishments: 5,000 Hour, 80°C Materials Testing

- Materials immersed in LC-EG & water for 5,000 hours at 80°C
- Metals performed significantly better than most polymers
- Polymers containing functionalized groups contributed many more ions than short branched hydrocarbons

LC-EG: ethylene glycol-based coolant

Accomplishments: SEM Analysis of Brass in FC & LC

Brass (CDA 260) Immersed in FC & LC for 2,500 hours at 80°C

Appearance

SEM Microscopy

EDS Analysis

FY 2013 DOE Annual Review Meeting // FC077

Accomplishments: SEM Analysis of Polypropylene in Coolants

	Polypropylene Immersed in Coolants for 2,500 hours at 80°C						
	Blank	BioGlycol-Water	FC	LC			
Appearance	ORIGINAL	65BG-DW	EC	LC			
Microscopy	SEM H/K. 18.8 IV WO. 7.40 mm View fold: 402 km View fold: 402 km Det DSE 500 km	SEBI WE 15.0 KV View field: 370 ym Det 850 I 100 ym	SEM INC 15 8 M Were Test 2 30 yan Dec 836 100 ym	SEM MAG. B15 4 Delegravity; E31313			

FY 2013 DOE Annual Review Meeting // FC077

DYNALENE 17

Accomplishments: SEM Analysis of Viton in Coolants

	Viton Immersed in Coolants for 2,500 hours at 80°C							
	Blank	BioGlycol-Water	FC	LC				
Appearance	ORIGINAL	65BG-DW	EC	LC				
Microscopy	SERI M/, 15.0 M, WD 9.47 mm Wew Rold 50 µm Det 855 109 µm	Alfan Har 158 P.M. HND: 8 Add anna View field: SE7 pm Det: DSC 100 pm	SEM INV. 15.0 IV WP: 18.60 mm VEGA3 TESCA View field. 490 µm Det. 858 183 µm	SEM MP: 15.0 AV MD: 18.8 am PEGA3 TESCAR View finite 411 pm Ext: 856 100 pm SEM MAG: ND: a Outwiendry; 63:13:13 Performance in nurceapace				

Accomplishments: Applied Voltage Test Rig

0

- Testing near 70°C
- Impact of 5V on conductivity growth is negligible
- Initial conductivity of Dynalene coolant with nanoparticles is higher, then gradually is reduced

LC-S: LC with proprietary component

Elapsed Time (hr)

60

40

20

FC LC

LC-S

×

80

100

Femperature

Accomplishments: Effect of FC/LC Inhibitor on Aluminum

- Electrochemical results of inhibited and uninhibited aluminum at room temperature and 50°C
- FC/LC non-ionic corrosion inhibitors in EG base fluid significantly reduce corrosion rate over uninhibited EG after 96 hour immersion times
- Longer immersion times allow the inhibitors to coat the aluminum protecting the metal from corrosive attack

Accomplishments: Protonex Fuel Cell

Fuel Cell Specifications:

- Operating load of 150 W (5 Amps, 30 Volts)
- Coolant temperature of 52°C
- No loss of fuel cell performance or operating load during duration of testing

Accomplishments: Field Testing

- 10 fuel cell manufacturers testing FC and LC coolants
- 3 manufacturers purchasing FC and LC
- 2 fuel cell companies purchasing and testing FC and LC
- 3 companies planning testing

Collaborations & Acknowledgements

- University of Tennessee, Knoxville
 - Mike Manahan
 - Grace Briggs
 - Mushrif Choudhury
 - Ozgur Cekmer
 - Subhadeep Chakraborty
 - Professor Matt Mench
- Protonex Technology Corporation
 - Jeremy Hitchcock
 - Paul Osenar
- Dynalene, Inc.
 - Sreya Dutta
 - Lauren Fotiades
 - Patrick McMullen
 - Kevin Coscia
 - David Schiemer
- Lehigh University Center for Advanced Materials and Nanotechnology

- Department of Energy
 - Kathi Epping Martin
- Naval Research Laboratories
 - Karen Swider-Lyons
 - Yannick Garsany
- All the fuel cell manufacturers who are testing and purchasing Dynalene fluids

Future Work

- Complete validation of corrosion inhibitors in 5,000 hour tests (Dynalene)
 - High-temperature electrochemical testing (100°C)
- Complete compatibility and thermal degradation studies at temperature exceeding 100°C (Dynalene)
- Complete long term testing of final coolant formulation in working fuel cell system (Dynalene)
- Continuation of testing in automotive coolant rig (UTK)
 - Testing up to 35 V
 - Testing of 300 hours for all coolants
- Continuation of tested fluid species identification (UTK)
 - New ion-chromatograph/HPLC dual channel system installed at UTK

Summary

Accomplishments in 2012

- Coolant optimization and scale-up completed and Dynalene is capable of producing FC coolant in large quantities
- Fuel cell coolant testing skids at Dynalene and UTK completed and prepared for long term testing
- Coolant degradation tested at 120°C
- Corrosion inhibitors validated in short term testing using immersion and electrochemical methods
- Compatibility of metals and polymers completed in short term tests at 80°C and 100°C

Accomplishments in 2013

- Surface charge of reformulated nanoparticle has been increased to 890 µeq/g
- Compatibility and thermal degradation studies of polymers and metals have been performed at 80°C for 5,000 hours
- Degradation of new coolant formulations has been measured at 120°C
- Corrosion inhibitors have been validated for metals and polymers at 80°C for 2,500 hours using SEM/EDS analysis
- Coolants have been tested in working fuel cell in 100 hour tests
- Freeze/thaw tests completed and confirmed that particles remain stable in coolant

Thank You

Questions?

- High-Temperature Testing
- SEM-EDS Pictures
- Electrochemical Results
- Coolant Properties
- Electrochemical Equations

Technical Back-Up Slides

HIGH-TEMPERATURE TESTING SEM-EDS PICTURES ELECTROCHEMICAL RESULTS COOLANT PROPERTIES ELECTROCHEMICAL EQUATIONS

Technical Slide: 120°C Testing with BioGlycol Coolants

- 65 & 80 wt% BioGlycol-based coolants exposed to 120°C for 336 hours
- Higher BioGlycol-based coolants showed less degradation at higher temperatures

Sample	Initial pH	Final pH	Initial Cond., μS/cm	Final Cond., µS/cm
65 BG-DW	5.44	3.78	1.23	14.33
65 LC	5.62	3.82	1.14	14.04
65 FC	5.03	3.76	2.13	16.4
80 BG-DW	5.57	4.34	0.38	2.07
80 LC	5.52	4.22	0.46	2.46
80 FC	5.37	4.10	0.76	4.20

65 wt% BioGlycol-based Coolants After Test

80 wt% BioGlycol-based Coolants After Test

Technical Slide: Brass Blank SEM & EDS

Blank Brass Coupon, SEM/EDS

Blank Coupon SEM

Blank Coupon EDS

Technical Slide: Effect of FC/LC Inhibitor on Aluminum

- Electrochemical results of inhibited and uninhibited BioGlycol with aluminum at 80°C
- Incubation in the coolant for longer period of time protects the metal from general corrosion and pitting
- Corrosion Inhibitors form protective layer on Al on extended exposure; this imparts excellent corrosion resistance to the metal

Coolant Properties

Coolant	Specific Gravity	Viscosity, cP	Thermal Cond., W/mK
Dynalene LC	1.049	31.3 @ 0°C 18.3@ 10°C	0.316
Dynalene FC	1.048	30.6 @ 0°C 17.5 @ 10°C	0.323

