

Enlarging Potential National Penetration for Stationary Fuel Cells through System Design Optimization

Chris Ainscough (PI), Sam Sprik, Jack Brouwer (UCI), Dustin McLarty (UCI), Kristin Field

National Renewable Energy Laboratory

May 14, 2013

Project ID# FC083

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Project start date: October 2011
- Project end date: October 2013*

Barriers Addressed

- Cost
- Durability
- Performance relative to incumbent

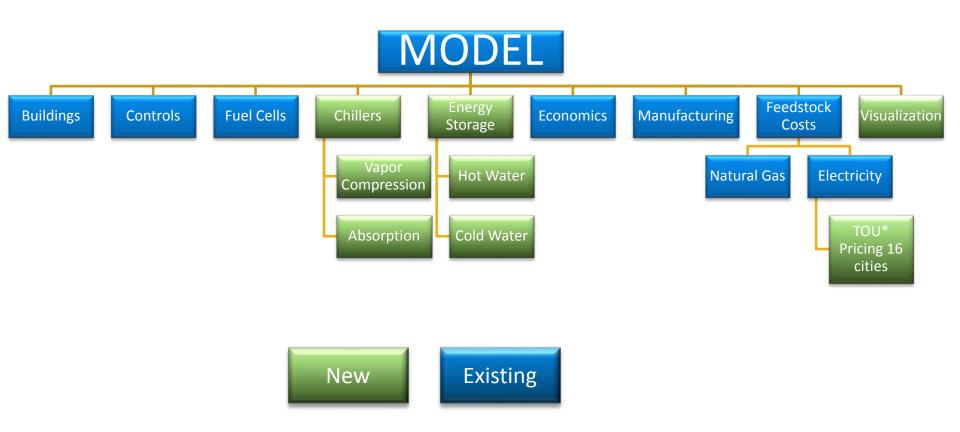
Budget

- Total project funding
 - DOE share: \$650k
 - Contractor share: \$0k
- Funding received in FY12: \$300k
- Planned funding for FY13: \$50k

*Project continuation is determined annually by DOE **Funded under a separate project

Partners

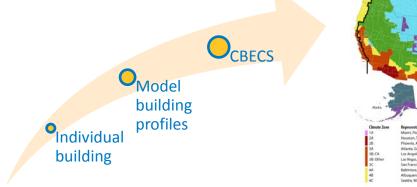
- University of California, Irvine (UCI)
- Lawrence Berkeley National Lab (LBNL)**
- Strategic Analysis, Inc.**
- Battelle**
- Acumentrics, Ballard Power Systems, ClearEdge Power, and PNNL (User's group)


Relevance: Objectives

Technical Challenges					
CostDurabilityPerformance relative to	incumbent				
DOE Goal	Project Goal				
By 2020, develop medium-scale CHP fuel cell systems (100 kW–3 MW) that achieve 50% electrical efficiency, 90% CHP efficiency, and 80,000 hours durability at a cost of \$1,500/kW for operation on natural gas, and \$2,100/kW when configured for operation on biogas	 Build an open-source tool that helps CHP fuel cell developers, end users, and other stakeholders to do the following for their systems, helping to drive economies of scale and cost reduction: Determine the appropriate sizing to reduce cost Integrate to commercial building control and HVAC systems to maximize durability Compare performance relative to incumbent technologies Determine optimum system configuration Evaluate potential market penetration 				

Approach: Milestones

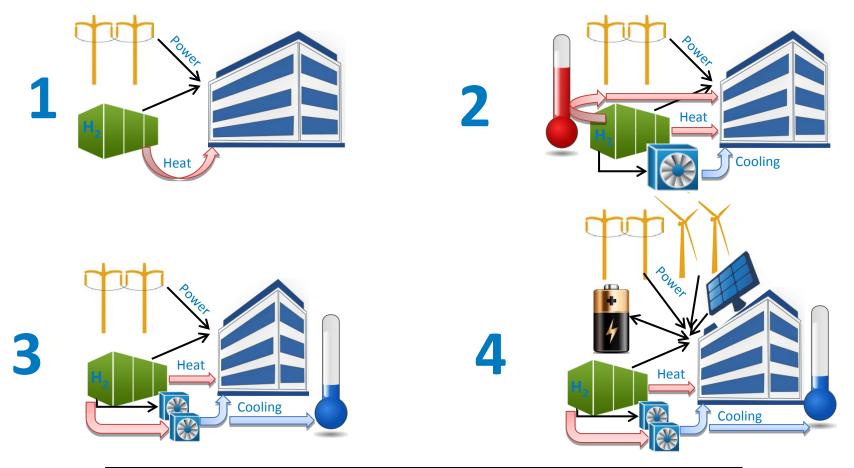
02/13 (complete)	Implement updated strategies for cost-minimize, load follow, peak shave, and GHG-minimize dispatch and control into the Commercial Building Fuel Cell Model. UCI subcontract task 2.
4/13	Model verification against actual building/CHP installations
6/13	Scenario analysis
7/13	Demonstrate the fuel cell model to the fuel cell team. This demonstration will serve as the basis for a Go/No-Go decision on further work for the project.


Approach: Construction of the Model

*Time-Of-Use

Accomplishment: Input to CBECS

- Successfully lobbied for inclusion of relevant questions on building automation, controls, and onsite generation on the 2012
 Commercial Building Energy Consumption Survey (CBECS), which is conducted usually every 3-5 years, but has not been updated in its entirety since 2003.
- CBECS 2012 will represents the energy usage data for >12,000 (2.3x the number in the 2003 survey) commercial buildings, with statistical extrapolations for the whole country.
- By integrating model building results with CBECS, national impact and potential market penetration can be estimated.



Accomplishment: Building Modules

- NREL's Electricity, Resources, and Building Systems Integration Center has updated energy use profiles for 16 model building types in 16 climate zones, for three different vintages
- Building modules were updated to 15-min time step, and building coil loads were added. This enabled modeling of energy storage systems.
- Represents about 67% of U.S. commercial inventory

Total:	Building types	Locations	Vintages
	Restaurant: full-service (sit down)	Miami (ASHRAE 1A)	 New construction (compliant with
768 profiles	Restaurant: quick-service	Houston (ASHRAE 2A)	ASHRAE 90.1-2004)
voo promes	School: primary school	Phoenix (ASHRAE 2B)	
	School: secondary school	Atlanta (ASHRAE 3A)	•"Post-1980" construction (80s/90s,
	Office: large office	Los Angeles (3B-Coast)	compliant with ASHRAE 90.1-1989)
	Office: medium office	Las Vegas (3B-Inland)	
	Office: small office	San Francisco (ASHRAE 3C)	• "Pre-1980" construction
	Hospitality: large hotel	Baltimore (ASHRAE 4A)	
	Hospitality: small hotel/motel	Albuquerque (ASHRAE 4B)	
	Health care: large hospital	Seattle (ASHRAE 4C)	
	Health care: outpatient facility	Chicago (ASHRAE 5A)	
	Retail: big-box, standalone retail	Boulder (ASHRAE 5B)	
	Retail: retail strip mall	Minneapolis (ASHRAE 6A)	
	Retail: supermarket	Helena, MT (ASHRAE 6B)	
	Mid-rise apartment building	Duluth, MN (ASHRAE 7)	
	Unrefrigerated warehouse	Fairbanks, AK (ASHRAE 8)	

Accomplishment: New Control/Dispatch Cases

System	FC	Heat	Electric	Absorptive	Cold H ₂ O	Hot H ₂ O	Battery	Renewable	
		Recovery	Chiller	Chiller	Storage	Storage	Storage	Generation	el
1		\checkmark							N a po
2		\checkmark	\checkmark			\checkmark			
3		\checkmark	\checkmark	\checkmark	\checkmark				
4		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	t E

Accomplishment: New Control/Dispatch Cases

UCI added the following control strategies:

- Baseload
- Heat follow
- Peak, which follows the anticipated daily load in order to minimize system power cycling to help reduce related degradation

·	×
CostMinimize GHGMinimize LoadFollowing	•
PeakShaver baseLoad DFM	
heatFollow_DFM peak_DFM	
Deak_Drivi	
	-
Select all	
OK Cance	:I

Accomplishment: Building Chiller Integration

New integration with building energy systems

• Electric or absorption chillers

A ChillerSetup								×
Chiller II	nputs							
Name:	ElectricChiller	Chiller Type		93.2701	SIZE (kW)		Cooling Output % Nomina	2
Type:	Chiller	Electric Chil		95.2701	SIZE	1	0	
Version:		Absorption Chiller		26.5209	CILL	2	0.1000	
Description:	component croioion			6	Nominal	3	0.2000	-
Description.	Generic electric chiller				% Max Cool	5	0.4000	-
				100	Demand	6	0.5000	
					-	7	0.6000	
			Ŧ			8 9	0.7000	-
Picture:	ElectricChiller.jpg	Selec	t				۰ III ا	
Cancel	Had Malari Bornia CODUNA Bornia Bornia	R CONDENSER Data State Regeneration Reference Reference Reference Reference	el Solution Vapor	tt of Performance			Efficiency	
Save Only To Proje		EVELONCE FIGURE FORMATE	ion R	Chiller Coefficient of Performance	0.2	0.4 Pow	0.6 0.8 1 er [%]	

Accomplishment: Building Thermal Energy Storage

New integration with building energy systems

• Hot or cold water storage, the lowest cost energy storage currently available.

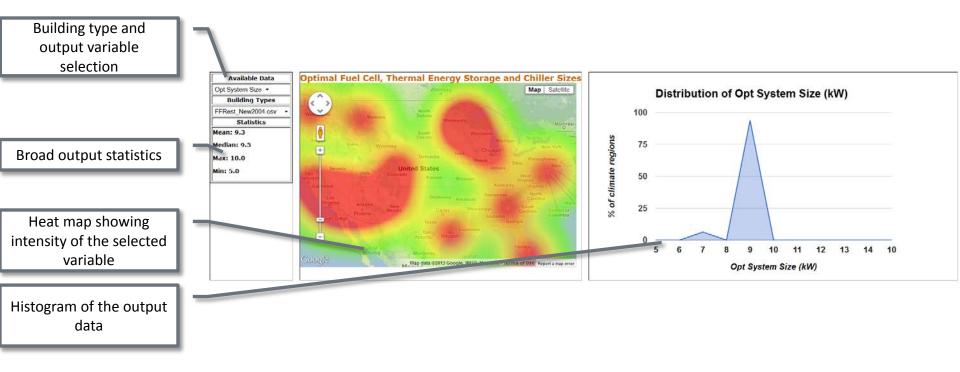
ThermalStorageSet	up		
Thermal St	torage Inputs	Farra Characa Tara	Tank Size
Name:	ColdTES	Energy Storage Type Cold Energy Stor	575.62 SIZE (kWh) 10.8715 SIZE (hr's at max chill capacity)
Туре:	TES	HotEnergyStorage	8168.14 SIZE (gal) 100 % Max Peak Heat/Cool Demand
	componentVersion		
Description:	Generic electric chiller	*	Tank Characteristics
			39 Cold Reservior Temp (C) 2 % storage
			55 Hot Reservior Temp (C)
Picture:		•	Chiller/Heat Capture
Ficture.	ElectricChiller.jpg	Select	1252.22 Max Fill Rate From 1252.22 Max Discharge Rate From Chillers/Heat Capture Demand (gal/min)
	General		(gal/min)
	Had Malers		9.19833 Max Fill Rate From 9.19833 Max Discharge Rate Chillers/Heat Capture From Demand (%/hr)
Cancel		Consended Solation Ref: Ref: Ref: Part Option Ref: Part Option	(%/hr)
Save Only To Proje		Ceeding Water	
Save Only TOT TOK		Heat Veskim	User-Defined Fill/Discharge
Save As	ext in the	EMPORIOR	47300.5 Fill Rate (gal/min) 47300.5 Discharge Rate (gal/min)
			10 Fill Rate (%/hr) 10 Discharge Rate (%/hr)
	-	-FAT FICHWARE	

Accomplishment: Optimization of Systems

Ability to analyze all climate zones, building types, and vintages, with either fixed CHP system size or optimal size (lowest energy cost)

🛃 MultiBuildingAna	alysis			
 System Sizing Fixed Size % Optimal Size 	Building Restaurant-Full ser	✓ Hotel - Ia ✓ Hotel - s	Climate	Zone/ Albuquer Seattle
Vintage	 Restaurant-Fast F School- Prim School Secon Office - large 	 Hospital Clinic Big Box R 	 Phoenix Atlanta Los Ang 	 Chicago Boulder Minneap
 Pre - 1980 Post- 1980 New - 2004 	 ✓ Office - medi ✓ Office - s ✓ Mid-rise Apartm 	Small Re Superma Warehou	✓ Las Vegas✓ San Franci✓ Baltimore	 Helena MT Duluth MN Fairbank
	Cancel	Run	Analysis	

Accomplishment: Utility Pricing


- National average
- Generic TOU or non-TOU
- 16 cities/climates
 - Some with multiple rates for small/large users
- EIA NG forecasts or \$0.88/therm

Accomplishment: Web-Based Visualization

Web-based visualization of an analysis case with a fuel cell system, chiller (vapor compression), and thermal energy (cold water) storage

- Can show which applications/markets make sense for fuel cells
- Allows simple non-expert exploration of the analysis

Accomplishment: Open Source Collaboration

Codebase is hosted on GitHub (the largest code host in the world)

- Allows for distributed collaboration
- Open source, controlled access to fuel cell developers, NREL, UCI, and other stakeholders

NREL/FCModel	€ master \$ <u>t</u> ools		LOG OUT	
Chris Ainscough 0aa71395e3c184953ee06b1ea98dc831afddec86 S revert commit S rol	l back this commit	no uncomm	itted changes	
New building profiles 🚥	🖸 github	unsynced co	mmits	
These profiles contain cooling demand in addition to the electricity needed to meet that demand. They also run at 15 minute time steps, rather than 1 hour, as the old ones did.			w building profiles	Today
component library\Building\FFRest_1A_New2004.mat	*	history		
component library\Building\FFRest_1A_Post1980.mat	*	General Up	cLarty odates to Multi-Building	Feb 25
component library\Building\FFRest_1A_Pre1980.mat	*	Chris Ains Merge bra		m Feb 25
component library\Building\FFRest_2A_New2004.mat	*	Chris Ains	scough JI on web viewer	Feb 25
omponent library\Building\FFRest_2A_Post1980.mat	*	Dustin Me	cLarty	Feb 25
omponent library\Building\FFRest_2A_Pre1980.mat	*	Updated V Chris Ains		
omponent library\Building\FFRest_2B_New2004.mat	*	Added we	b-base visualization	Feb 21
component library\Building\FFRest_2B_Post1980.mat	*	Chris Ains Merge bra	:cough nch 'master' of https://github.cc	m Feb 21
component library\Building\FFRest_2B_Pre1980.mat	*	Chris Ains Multiple u	scough pdates	Feb 21
component library\Building\FFRest_3A_New2004.mat	*	Dustin Me	c Larty ional grid rates & visualization c	Feb 20
omponent library\Building\FFRest_3A_Post1980.mat	*	Dustin Me		
component library\Building\FFRest_3A_Pre1980.mat	*	Adding Ele	ectric Grid Profiles & De-bugging	Feb 20
component library\Building\FFRest_3B-Coast_New2004.mat	*	Changes t	c Larty o GridAnalyzer & debug of Mult	Bu Feb 19
component library\Building\FFRest_3B-Coast_Post1980.mat	*	C Dustin Me Fixed bug	c Larty in optimal Chiller & TES size	Feb 13
component library\Building\FFRest_3B-Coast_Pre1980.mat	*	Dustin Me Still a bug	cLarty with Chiller & TES size	Feb 13

Collaborations: User's Group

- Formed a User's Group to guide further development of the model
 - Currently includes Acumentrics, Ballard Power Systems, ClearEdge Power, and PNNL
 - Members have access to the model and building profiles for their own use, and will be able to contribute code and other modules to the effort
 - All industry stakeholders are invited to participate

Collaborations: Development

- Controls and integration work
 UCI
- Manufacturing cost analysis (separately funded projects)
 - o LBNL
 - Strategic Analysis, Inc.
 - Battelle

Building profiles and analysis

 NREL Electricity, Resources, and Building Systems Integration Center (ERBSIC)

Proposed Future Work

• FY13/14

- o Go/No-Go
- Use the tool to evaluate/optimize CHP systems relative to output data from the output of the 2012 CBECS survey
- Work with fuel cell OEMs on improvements and customizations to the tool
- Validate model against real-world data

Summary

RELEVANCE This project addresses barriers of cost, durability, and performance relative to incumbent technologies.

APPROACH The approach includes an open source tool that fuel cell OEMs are invited to contribute to and use for their own purposes.

ACCOMPLISHMENTS We have expanded analysis capabilities and integration with commercial building control systems, developed visualizations, and made the code open source.

COLLABORATION Strong collaboration is occurring with industry, academia, and national labs. Open source code allows for contributions from other collaborators.

FUTURE WORK Future work is subject to a go/no-go decision.