2013 DOE Hydrogen and Fuel Cells Program Review

Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells

P. I.: Branko N. Popov Center for Electrochemical Engineering University of South Carolina Columbia SC 29208.

What of South Campion

Overview

Timeline

- Start date: June 2010
- End date: Sep 2013(Phase I)
- (No-cost Extension Apr-Sep 2013)
 - : March 2015 (Phase II)
- Percent complete: 65%

Budget

- Total project funding
 - ✤ DOE share: \$ 4,400,000
 - ✓ Phase-I: \$2,750,000
 - ✓ Phase-II: \$1,650,000
 - Contractor share: \$1,100,000
 - ✓ Phase-I: \$687,500
 - ✓ Phase-II: \$412,500
 - Funding Received till March 2013: \$1,896,403
 - Expected Funding for Phase-I: \$853,597(Until 09/30/2013)

Partners

- Yonsei University (YU), S. Korea
- Hyundai Motor Company (HMC),
 S. Korea (Funding ended in Dec 2011; will resume in Phase II)

Barriers

- Catalyst performance
- Catalyst durability
- Scale-up synthesis procedures

DOE Technical Targets

Electrocatalyst/MEA	2017 Targets
PGM Loading (mg/cm ²)	0.125
PGM Total Content (g/kW)	0.18
Mass Activity (A/mg _{Pt})	0.44
ECSA Loss after 30 k Cycles (Catalyst Stability) (%)	≤ 40
ECSA Loss after 400 h (Support Stability) (%)	≤ 40

Project Lead

- University of South Carolina (USC)
 Additional Interactions
- Rudiger Laufhutte (Univ. Illinois)
- Dr. JoAn Hudson (Clemson University)

<u>**Objectives**</u>: Development of high performance, low cost and durable cathode catalyst and support able to meet the 2017 DOE targets.

Approach:

- > Optimization studies of **carbon composite catalyst** (**CCC**) support. (USC)
- > Development of a process for the in-house synthesis of **carbon nanocage (CNC)** (USC and YU)
- Development of advanced hybrid catalyst based on CCC support and Pt [low Pt-alloy loading catalyst]. (USC)
- > Development of **carbon nanocage** (**CNC**) supported Pt-alloy catalyst (Pt-alloy/CNC). (USC & YU)
- > Development of high volume procedures for the synthesis of promising catalyst. (USC & YU)

Primary Focus for Past Year:

- Performance evaluation of second generation CCC support. (USC)
 - Structural and physical characterization
 - ✤ Catalytic activity of CCC₂₅₀ and CCC₃₈₀ CCC supports
- Performance evaluation of USC Pt/CCC catalysts.
 - ♦ 40% Pt/CCC₃₈₀ and 35% Pt/CCC₂₅₀ catalysts
- Evaluation of different strategies for the optimization of second generation hybrid cathode catalyst (HCC, HCC = PtCo/CCC_x, X=250 or 380 m²/g) with total loadings of 0.2 mg_{Pt} / cm² / MEA. (USC) (CCC supports having BET surface area between 250 and 380 m²/g)
 - Initial and durability of kinetic mass activities.
 - Initial and durability of high current density performance in H_2 -air.
 - ✓ HCC_{250} and HCC_{380} catalysts
 - Study the mass activity, durability and power density as a function of catalyst composition
- Performance evaluation of Pt-alloy/CNC catalyst activity and durability with total loadings of ~0.2 mg_{Pt} / cm² / MEA. (YU)

Project Timeline and Milestones*

Carbon composite support was synthesized with onset potential for oxygen reduction closer to 0.9 V vs. SHE and less than 2.5% H ₂ O ₂	
production. <u>Milestone 1</u> .	

Characteristic	Units	2017 Targets	Status
Mass activity (80 °C, 100% RH, 150 kPa _{abs} .)	A/mg _{Pt} @ 0.9 V _{iR-free}	0.44	0.43 (<u>USC</u> Pt ₂ Ni ₁ /CCC _{<600}) 0.38 (<u>USC</u> HCC ₂₅₀) 0.37 (<u>USC</u> HCCC ₃₈₀) 0.44 (<u>YU</u> Pt ₂ Ni ₁ /CNC) (Milestone 2)
Catalyst durability (30,000 cycles 0.6-1.0 V, 50 mV/s, 80/80/80, 100 kPa _{abs} ., H ₂ /N ₂)	% Mass activity loss % ECSA loss mV loss @ 0.8 A/cm ²	≤40% ≤40% ≤ 30 mV	47% (mass activity) & 15% (ECSA) for USC HCC_{250} 53 mV loss at 0.8A/cm ² under H_2 -air for USC HCC_{250} 46% (mass activity) & 19% (ECSA) for USC HCC_{380} 53% (mass activity) & 27.8% (ECSA) for USC $Pt_2Ni_1/CCC_{<600}$ 31.8% (mass activity) & 26.3% (ECSA) for YU Pt_2Ni_1/CNC (Milestone 3)
Support durability (1.2 V for 400 h at 80 °C, H ₂ -N _{2, 150} kPa _{abs.} 100% RH)	% Mass activity loss % ECSA loss mV loss @ 0.8 A/cm ²	≤40% ≤40% ≤ 30 mV	50% mass activity loss and 42% ECSA loss for USC HCC ₂₅₀ 29 mV loss at 0.8 A/cm ² under H ₂ -air for USC HCC ₂₅₀ 47% mass activity loss and 64% ECSA loss for the USC Pt/CCC ₂₅₀ 118 mV loss at 0.8 A/cm ² under H ₂ -air for the USC Pt/CCC ₂₅₀ 47.7% mass activity loss and 42.7% ECSA loss For YU Pt ₂ Ni ₁ /CNC (NL) (Milestone 3)
PGM total loading	mg _{Pt} /cm ²	0.125	0.15-0.2 $mg_{catalyst}/cm^2$ with <u>USC</u> Pt/CCC ₂₅₀ , HCC ₂₅₀ , Pt ₂ Ni ₁ /CCC _{<600} , Pt ₁ Co ₁ /CCC ₃₈₀ and 0.19 $mg_{catalyst}/cm^2$ with <u>YU</u> Pt ₂ Ni ₁ /CNC
PGM total content	g _{Pt} /kW (rated)	0.18	0.39 (33% Pt_1Co_1/CCC_{380}) – USC 0.36 (35% Pt/CCC_{250} and HCC_{250}) – USC 0.34 (46% $Pt_2Ni/CCC_{<600}$) - USC 0.37 (50% $Pt_2Ni/CNC-NL$) – YU

Milestone 4: <u>Dec 2012</u>: Initial high current density performance in H₂-air (80 °C, 100% / 40% RH, 150 kPa_{abs}, outlet pressure, 1.5/1.8 stoic.). (Task 6 and 7)

Status: Achieved 1.25 and 1.04 A/cm² at 0.58 V_{iR-free} for the Pt/CCC₂₅₀ and HCC₃₈₀ catalysts, respectively.

> Milestone 5: <u>Sep 2013</u>: Scale-up synthesis and durability of promising catalysts with optimum high current density performance in H_2 /air. (Task 8)

<u>Status</u>: Scale-up synthesis of HCC and Pt_2Ni/CNC : On going. The catalyst durability studies under high current region in H_2 -air for USC HCC and Pt_2Ni/CNC catalysts started in March 2012.

Phase-II

- > Task 1-4. Optimization studies of selected catalysts (HCC and Pt-alloy/CNC).
 - a) Initial and durability of mass activity
 - b) Support durability
 - c) Initial and durability of high current performance under H₂-air.
- **Task 8. Optimization of scale-up synthesis procedure.**
- Task 9. Short-stack testing
 - a) Construction of short-stack (up to 10 cells, 50 cm²) using two selected catalysts
 - b) Durability of high current performance under H₂-air
 - c) Catalyst down selection

Criteria: Durability under cycling transportation conditions at 80 °C for 5000 hours.

Deliverable: Fuel cell and short stack will be constructed using the most promising catalyst and supplied to a DOE designated site.

Technical Accomplishments (I. Support Development) Progress in the Synthesis of CCC Supports (Apr '12 – Mar '13)

Technical Accomplishments (I. Support Development) Progress in Electrochemical Performance of CCC Supports (RRDE Studies) (Apr '12 – Mar '13)

The CCC-4 exhibits oxygen reduction to water via four-electron
 transfor with <2% U.O. production (above 0.2.) (via NUE). Milectone

transfer with <<u>2% H₂O₂ production (above 0.2 V vs. NHE)</u>. Milestone 1₈

Technical Accomplishments (II. Catalyst Development) Progress in the Synthesis of Pt/CCC and HCC Catalysts (Apr '12 – Mar '13)

Technical Accomplishments (III. Catalyst Durability) Progress in Catalyst Durability Studies (0.6-0.925 V Cycling) Apr '12 – Mar '13)

Technical Accomplishments (III. Catalyst Durability) Progress in Catalyst Durability Studies (0.6-0.925 V Cycling) Apr '12 – Mar '13

HIGHLIGHT:

 HCC₂₅₀ satisfies the 2017 DOE target of ≤40% mass activity and ECSA loss after 30 k cycles (0.6-0.925 V). (Milestone 3)

Comparison of ECSA loss of HCC Catalysts

Technical Accomplishments (III. Catalyst Durability) Progress in Catalyst Durability Studies (0.6-1.0 V Cycling) Apr '12 – Mar '13

DOE Accelerated Stress Test Protocol $0.6 \sim 1.0 \text{ V}, 50 \text{mV/s}, 30,000 \text{ cycle}, \text{H}_2/\text{N}_2$ $80^{\circ}\text{C}, 100 \% \text{ RH}, \text{single cell } 25 \text{cm}^2$ <u>Catalyst</u> : HCC₂₅₀ Pt mass activity : H₂/O₂, 2.0/9.5 stoic, 100% RH, 80°C, 150 kPa HIGHLIGHT: <u>Status against 2017 DOE targets</u> • USC HCC_{250} catalyst shows <u>47% mass activity loss</u> (2017 DOE target is \leq 40%) and <u>15% ECSA loss</u> (2017 DOE target is \leq 40%) after 30 k cycles between 0.6 and 1.0 V. (Milestone 3)

Technical Accomplishments (III. Catalyst Durability) Progress in Catalyst Durability Studies: HCC₂₅₀ (0.6-1.0 V Cycling) Apr '12 – Mar '13

13

Technical Accomplishments

Progress in Initial Performance Evaluation of Pt/CCC₂₅₀ Catalysts (Apr '12 – Mar '13)

Technical Accomplishments (IV. Support Durability) Progress in Support Stability Studies at 1.2 V Potential Holding (Apr '12 – Mar '13) 1. Support Stability Studies of 40% Pt/CCC₂₅₀

Technical Accomplishments (IV. Support Durability) Progress in Support Stability Studies at 1.2 V Potential Holding (Apr '12 – Mar '13) 2. Support Stability Studies of HCC₂₅₀

16

Technical Accomplishments (IV. Support Durability)

Progress Against DOE 2017 Targets for Pt/CCC₂₅₀ and HCC₂₅₀ Catalysts

Catalyst Durability Test (Potential Cycling between 0.6 and 1.0 V) (Milestone 3)

Catalyst	Particle size	rticle size Mass activity (A/mg _{Pt})		ECSA (m²/g)		Cell voltage loss at 800 MA/cm ² (mV)	
	(nm)	Initial	30 k	Initial	30 k	Cell voltage	Cell voltage (iR-free)
HCC ₂₅₀	4.0	0.38	0.2 (47% loss)	23.2	19.8 (15% loss)	<u>53 mV</u>	<u>46 mV</u>

Support Stability Test (Potential Holding at 1.2 V) (Milestone 3)

Catalyst	Particle size	Mass activity (A/mg _{Pt})		ECSA (m²/g)		Cell voltage loss at 800 MA/cm ² (mV)	
Catalyst	(nm)	Initial	400 h	Initial	400 h	Cell voltage	Cell voltage (iR-free)
HCC ₂₅₀	4.0	0.38	0.19 (50% loss)	21.3	16.2 (42% loss)	<u>29 mV</u>	<u>29 mV</u>
Pt/CCC ₂₅₀	2.5	0.227	0.12 (47% loss)	59.4	21.3 (64% loss)	<u>118 mV</u>	<u>130 mV</u>

HIGHLIGHT: (Status against 2017 DOE targets)

 <u>HCC₂₅₀ catalyst</u> shows <u>47% mass activity loss and 15% ECSA loss after 30 k cycles</u> between 0.6 and 1.0 V. The 2017 DOE target is ≤40% loss of mass activity and ECSA after 30 k cycles. The potential loss at 800 mA/cm² (1.5/1.8 stoic.) is <u>53 mV</u> for the HCC₂₅₀ against 2017 DOE target of 30 mV after 30 k cycles.
 The mass activity loss is 50% and the potential loss at 800 mA/cm² is 29 mV after 400 h potential holding at 1.2 V for the HCC₂₅₀ catalyst. The 2017 DOE targets are ≤40% mass activity loss and 30 mV potential loss after 400 h.

Sep 2013: GO/NO-GO decision for Milestones 3, 4 and 5

Criteria: Selection of two most promising catalysts with (i) high kinetic mass activity, (ii) $\leq 40\%$ loss of initial catalytic activity after 30 k cycles, (iii) initial high current density performance of at least 1.5 A cm² at 0.58 V_{iR-free} under H₂/air (1.5/1.8 stoic.), 80 °C, 40% RH, 150 kPa_{abs} outlet pressure.

Technical Accomplishments Progress in Catalyst Stability Studies of Pt-alloy/CNC Catalysts (YU) (0.6-1.0 V Cycling)

HIGHLIGHT: (Milestone 2) • YU catalysts show mass activities of 0.44 for Pt₂Ni/CNC (L), Pt₂Ni/CNC (NL) and Pt₂Ni/CNC(New) catalysts.

<u>New = CNC under development at YU</u>

NL – Not Leached L - Leached

Catalyst Durability Test (Potential Cycling between 0.6 and 1.0 V)

Catalyst	MA _{Initial} (A mg _{Pt} ⁻¹)	MA _{30k} (A mg _{Pt} ⁻¹)	ECSA _{Initial} (%)	ECSA _{30k} (%)
Pt ₂ Ni/CNC (L)	0.44	0.28 (36% loss)	24.6	16.9 (31% loss)
Pt ₂ Ni/CNC (NL)	0.44	0.30 (31.8% loss)	24.3	17.9 (26.3% loss)

HIGHLIGHT: (Status against 2017 DOE targets)

- Pt₂Ni/CNC (L) catalyst shows mass activity loss of 36%

 and ECSA loss of 31% after 30 k cycles. This catalyst

 satisfies the 2017 DOE target of ≤40% loss of mass

 activity and ECSA after 30 k cycles. (Milestone 3)
- <u>Pt₂Ni/CNC (NL) catalyst</u> shows <u>mass activity loss of</u> <u>31.8% and ECSA loss of 26.3% after 30 k cycles</u>. This catalyst satisfies the 2017 DOE target of ≤40% loss of mass activity and ECSA after 30 k cycles. (Milestone 3)

DOE Accelerated Protocol

 $0.6 \sim 1.0$ V, 50mV/s, 30,000 cycle, H₂/N₂

80°C, 100 % RH, single cell 25cm²

Catalysts : Yonsei U. Pt-alloy/CNC, 0.1mg_{metal}/cm²

<u>Pt mass activity</u> : H₂/O₂, 2.0/9.5 stoic, 100% RH, 80°C, 150 kPa

Technical Accomplishments

Progress in Support Durability Studies of Pt-alloy/CNC Catalysts (YU) (1.2 V Potential Holding)

Support Stability Test (Potential Holding at 1.2 V)

Catalyst	MA _{Initial}	MA _{400h}	ECSA _{Initial}	ECSA _{400h}
	(A mg _{Pt} -1)	(A mg _{Pt} ⁻¹)	m²/g _{Pt}	m²/g _{Pt}
Pt ₂ Ni/CNC (L)	0.44	0.2 (54% loss)	24.6	12.5 (49% loss)
Pt ₂ Ni/CNC (NL)	0.44	0.23 (47.7% loss)	24.3	14.0 (42.4% loss)

HIGHLIGHT: (Status against 2017 DOE targets)

- YU catalysts show mass activities of 0.44 and 0.44 for Pt₂Ni/CNC (L) and Pt₂Ni/CNC (NL) catalysts, respectively.
- <u>Pt₂Ni/CNC (L) catalyst shows mass activity loss of 54% and ECSA loss of 12.5% after 400 h.</u>
- <u>Pt₂Ni/CNC (NL) catalyst shows mass activity loss of 47.7% and ECSA loss of 14.0% after 400 h.</u>
- The 2017 DOE target is ≤40% loss of mass activity and ECSA after 400 h potential holding at 1.2 V. (Milestone 3)

NL – Not Leached; L - Leached

DOE Accelerated Protocol

Hold at 1.2V for 24 h, H_2/N_2

80°C, 150 kPa, 100 % RH, single cell 25cm²

 $\underline{Catalyst}: Yonsei \ U. \ Pt_2Ni_1/C, \ 0.1mg_{metal}/cm^2$

<u>Pt mass activity</u> : H₂/O₂, 2.0/9.5 stoic, 100% RH,

80°C, 150 kPa

Collaborations

Subcontractors:

- Yonsei University
 - Activation procedure to deposit Pt on graphitic carbon support.
 - Pt-alloy/CNC catalyst development with high mass activity, specific activity and durability.
 - Process to control the particle size at high temperature treatment.
 - Evaluation of high current density performance under H₂-air.
 - Support corrosion mechanism studies.
- Hyundai Motor Company (Funding ended Dec. 2011 and will resume in Phase II)
 - Pt-Pd catalyst development and performance evaluation.
 - Flow-field design optimization.
 - Short-stack design and construction.
 - Performance evaluation of Pt/C catalyst under short-stack conditions.
 - Construction and delivery of short-stack (10 cells, 50 cm²) to University of South Carolina. HMC delivered a short-stack (50 cm²) in Nov 2011.

Additional Interactions:

- Rudiger Laufhutte (University of Illinois, Urbana Champagne): ICP analysis of Pt-alloy catalysts.
- > JoAn Hudson & Haijun Qian (Clemson University): Transmission Electron Microscopy analysis.
- Soumitra Goshroy (EM Center, USC): HR-TEM analysis
- Scribner Associates: Design and construction of fuel cell test station according to USC requirements.
- Fuel Cell Technologies: Design and construction of 25 and 50 cm² single cells according to USC specifications.

Future Work

In the future work during the no-cost extension period (April 01, 2013 – September 30, 2013), we plan to continue with the progress made so far with the HCC catalysts and further research will be focused on the following tasks:

<u>**Task 1**</u>: Transition metal content optimization studies and synthesis of Pt-alloy/CCC₂₅₀ catalysts containing low transition metal content (<8 wt.%) in the alloy using the procedure developed at USC.

<u>**Task 2**</u>: Transition metal content optimization studies and synthesis of Pt-alloy/CNC catalysts containing low transition metal content (<8 wt.%) in the alloy.

Task 3: Synthesis of highly stable graphitized CCC and CNC supports. These supports will be synthesized by using two different methods which require (i) preparation of carbon composite support synthesized at 900 °C and (ii) removal of amorphous carbon from the CCC and CNC support by chemical oxidation at elevated temperature in the presence of oxygen. The CCC and CNC supports will also be synthesized using transition metal containing precursors at elevated temperatures (between 700 and 1500 °C). The goal is to obtain CCC and CNC supports with BET surface area of 150 m²/g only by heating and/or removal of any amorphous carbon present by means of chemical oxidation. Our preliminary studies indicated that the percentage of amorphous carbon decreases due to the high temperature annealing procedure.

Subtask 3.1: Optimizing the procedures to purify the high temperature treated carbon composite supports to remove transition metals and amorphous carbon.

Task 4: Deposition of Pt-alloy catalysts on 140-180 m²/g highly graphitized carbon composite supports which are completely purified to remove both amorphous carbon and traces of transition metals.

The goal is to select a best performing catalysts which satisfy the 2017 DOE requirements of \leq 40% loss of mass activity, \leq 40% loss of ECSA and <30 mV loss at 0.8 A/cm² under H₂-air after 30 k potential cycling (between 0.6 and 1.0 V) and potential holding (at 1.2 V for 400 h) experiments.

Summary: Status Against 2017 DOE Targets (As of March 2013)

Characteristic	Units	2017 Targets	Status
PGM total loading	mg _{Pt} /cm ²	0.125	0.15-0.2 mg _{catalyst} /cm ² with <u>USC</u> Pt/CCC ₂₅₀ , HCC ₂₅₀ , Pt ₂ Ni ₁ /CCC _{<600} , Pt ₁ Co ₁ /CCC ₃₈₀ and 0.19 mg _{catalyst} /cm ² with <u>YU</u> Pt ₂ Ni ₁ /CNC
PGM total content	g _{Pt} /kW (rated)	0.18	0.39 (33% Pt_1Co_1/CCC_{380}) – USC 0.36 (35% Pt/CCC_{250} and HCC_{250}) – USC 0.34 (46% $Pt_2Ni/CCC_{<600}$) - USC 0.37 (50% $Pt_2Ni/CNC-NL$) – YU
Mass activity (80 °C, 100% RH, 150 kPa _{abs} .)	A/mg _{Pt} @ 0.9 V _{iR-free}	0.44	0.43 (USC $Pt_2Ni_1/CCC_{<600}$) 0.38 (USC HCC_{250}) 0.37 (USC $HCCC_{380}$) 0.44 (YU Pt_2Ni_1/CNC) (Milestone 2)
Catalyst durability (30,000 cycles 0.6-1.0 V, 50 mV/s, 80/80/80, 100 kPa _{abs} ., H ₂ /N ₂)	% Mass activity loss % ECSA loss mV loss @ 0.8 A/cm ²	≤40% ≤40% ≤ 30 mV	47% (mass activity) & 15% (ECSA) for USC HCC_{250} 53 mV loss at 0.8A/cm ² under H_2 -air for USC HCC_{250} 46% (mass activity) & 19% (ECSA) for USC HCC_{380} 53% (mass activity) & 27.8% (ECSA) for USC $Pt_2Ni_1/CCC_{<600}$) 31.8% (mass activity) & 26.3% (ECSA) for YU Pt_2Ni_1/CNC (Milestone 3)
Support durability (1.2 V for 400 h at 80 °C, H ₂ -N _{2, 150} kPa _{abs.} 100% RH)	% Mass activity loss % ECSA loss mV loss @ 0.8 A/cm ²	≤40% ≤40% ≤ 30 mV	50% mass activity loss and 42% ECSA loss for USC HCC ₂₅₀ 29 mV loss at 0.8 A/cm ² under H ₂ -air for USC HCC ₂₅₀ 47% mass activity loss and 64% ECSA loss for the USC Pt/CCC ₂₅₀ 118 mV loss at 0.8 A/cm ² under H ₂ -air for the USC Pt/CCC ₂₅₀ 47.7% mass activity loss and 42.7% ECSA loss For YU Pt ₂ Ni ₁ /CNC (NL) (Milestone 3) 22

Team Members who contributed to this presentation

University of South Carolina

Branko N. Popov, Tae-keun Kim, Won-suk Jung, Xie Tianyuan, Joseph Rotchford, Akos Kriston and Prabhu Ganesan

Yonsei University (S. Korea) Hansung Kim Hyun-suk Oh Woong Hee Lee

Acknowledgement

U.S. Department of Energy