

# 2013 DOE Hydrogen and Fuel Cells Program Review

# Corrugated Membrane Fuel Cell Structures

Stephen Grot

Ion Power, Inc (Prime)

GM & GrafTech (Sub-Contractors)

May 15, 2013

This presentation does not contain any proprietary or confidential information

Project ID # FC090



## **Overview**



#### **Timeline**

Start: Sept 1, 2010

End: Feb 28, 2014

60% Complete

#### **Budget**

- Total project funding
  - DOE share \$1,651,616
  - Contractor share \$507,096
- DOE Funding received in FY12: \$300,000
- DOE Funding planned in FY13: \$130,873

#### **Barriers**

#### A: Costs

- Lower Metal GDL cost
- Lower Plate/GDL manufacturing costs

#### **B**: Performance

 High power density with low Pt loaded MEAs

#### **Partners**

- Interactions/ collaborations
  - General Motors
    Testing and Modeling
  - GrafTech
    Graphite components
  - GKD/Dexmet Metal screens
- Project lead
  - Ion Power





## **Objectives**

To pack more membrane active area into a given geometric plate area, thereby allowing both targets of power density and platinum utilization to be achieved

- To demonstrate a fuel cell single cell (50 cm<sup>2</sup>) with a 2-fold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure
- Incorporation of an ultra-low Pt loaded corrugated MEA structure in a 50 cm<sup>2</sup> single cell that achieves the DOE 2015 target of 0.2 gram Pt/kW, while simultaneously reaching the power density targets:
  - 1 W/cm<sup>2</sup> at full power
  - 0.25 W/cm<sup>2</sup> at ½ power



## **Objectives**



### Comparison of Convoluted Cell and Conventional Cell

The thickness of each cell is 1 mm, but the convoluted cell has twice the membrane area of the conventional cell





## Objectives: Tasks and Milestones



| Task<br>Number | Deliverable                                                                                                                                       | Due Date   | Percentage<br>Complete | Progress Notes                                               |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|--------------------------------------------------------------|
| GM<br>1.1      | 50 cm <sup>2</sup> jig designed and built                                                                                                         | 11/30/2011 | 100%                   | Completed                                                    |
| 1.2            | Both flat and corrugated seals for 50 cm <sup>2</sup> jig                                                                                         | 2/28/2013  | 80%                    | Ion Power is working with GM to secure this.                 |
| 1.3            | MILESTONE Year 1: Test jig baseline equal or exceeding GM cell performance                                                                        | 1/31/2013  | 80%                    | Test has been run, further tests needed for confirmation     |
| GrafTech<br>2  | Grafoil® corrugated GDL plate subassembly, with resistance <10 mOhm-cm² at any compressive force >20 psi                                          | 12/21/2012 | 50%                    | Ion Power is having challenges with this material.           |
| Ion Power<br>3 | Provide method for making metal corrugated GDL plate sub-assemblies, with resistance <10 mOhm-cm <sup>2</sup> at any compressive force >20 psi    | 2/28/2013  | 90%                    | High degree of screen strength-welding may not be necessary. |
| 3.1            | Down-select most promising metal corrugated GDL plate sub-assembly                                                                                | 5/30/2013  | 100%                   | Completed                                                    |
| 4              | Membrane incorporation into the corrugated GDL plate sub-assembly                                                                                 | 5/31/2013  | 60%                    | This is Ion Power's primary focus                            |
| 4.1            | Flat MEA Spray or Coating                                                                                                                         | 7/30/2013  | 60%                    | On Hold                                                      |
| 2, 3 & 5       | <b>Go/No-Go Decision:</b> Successful test of a corrugated fuel cell single cell; meeting a minimum power density of 70 mW/cm <sup>2</sup> at 0.8V | 8/31/2013  | 70%                    |                                                              |





## **Forming Fixtures**





## **Completed Membrane Forming Tool**







## Side View of Convolutions in Formed Aluminum Foil







## 3D Finite Element Analysis (FEA)

Thermal, Structural, and Electrical Analyses of the Corrugated Structure were performed to ensure feasibility of the design



## DOE Hydrogen Program

## **FEA Structural & Thermal Analysis**







### **FEA Structural & Thermal Results**

How much mechanical and thermal stress is the structure under?





Based on this thermal FEA analysis, and GM's system cost analysis, the cell will need to be run at a lower current density (1.2 A/cm<sup>2</sup> max) regime to avoid membrane overheating







### **FEA Electrical Results**

What is the voltage drop when running 1.0 A/cm<sup>2</sup> through the structure?

Demonstrates that the bulk of the voltage drop is in the contact resistance between the membrane and the flowfield and should not be an issue

**Electrical loading** 

Current = 1.0 A/cm<sup>2</sup>



Note: Joule heating fraction set to 0 for all parts, result is no thermal loading only result is electrical.









## Single Cell Layout with Die Cut Seals



- 1. Anode Plate
- 2. Cathode Plate
- 3. Anode Spacer
- 4. Cathode Spacer
- 5. Plate to Spacer O-Ring
- 6. Cell Assembly
- 7. Anode Flow Directors
- 8. Cathode Flow Directors
- 9. Die Cut Membrane Seals







## Convoluted Cell Structure Meets Target Resistance







## **Proposed MEA Manufacturing Process**



As Received GKC Wire Screen

Sonotek's Spray Coating Technology:

- Apply and cure microporous layer
- Apply and cure catalyst ink
- Apply and cure ionomer membrane



**Sonotek Spray-Coater** 





# Compression Images are Similar with Baseline Graphite GDL, and Wire Screen GDL with Microporous Layer



Anode = Sigracet® 10BC Graphite Fiber Paper

Cathode = Sigracet® 10BC Graphite Fiber Paper



Anode = Gold Screen with microporous layer

Cathode = Gold Screen with microporous layer





## Micro-Porous Layer Incorporation into Wire Screen GDL





## Collaborations



#### Subcontractor

• General Motors: Modeling, Testing, and Jig Design

#### Subcontractor

 GrafTech: Graphite-based GDL - Plate Sub-assembly Development

#### Suppliers

- **Dexmet**: Expanded Ti metal screens and plates, in different shapes
- GKD: Woven SS metal screens
- Sonotek: Spray coating MEA layers





## **Project Summary**

- Demonstrated project goal of <10 mOhm-cm<sup>2</sup> electrical resistance at several compressive forces >20 psi with "copper foil" membrane
- Metal screen diffusion media with microporous layers performs as well as state-of-the-art graphite based diffusion media
- Forming fixtures and convoluted cell hardware have been built





## **Proposed Future Work**

- Finish the de-bug and sealing issues with the convoluted single-cell hardware so that the first convoluted MEA fuel cell can be tested
- MEA performance metric:
  - Successful test of a corrugated fuel cell meeting a minimum power density of 70 mW/cm<sup>2</sup> at 0.8V





## **De-bug of Convoluted Hardware**

- Develop process for forming subgasket
- Investigate imbedding inner edges of subgasket into outer edges of mesh flowfield
- Modify cell hardware to achieve proper compression of membrane and to achieve seal between MEA and subgasket

