

POWER GENERATION FROM AN INTEGRATED BIOMASS REFORMER AND SOLID OXIDE FUEL CELL

SBIR Phase III Xlerator Program

Quentin Ming, Principal Investigator Patricia Irving, Program Manager, Presenter

INNOVATEK

May 14, 2013

Project ID: FC096

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Start: 10-01-2010 Finish: 03-31-2014

66% Complete

DOE Barriers: Cost, Durability & Performance DOE Targets: H2 production from diverse domestic sources; distributed power demo 2Q 2018

YearCost/kWEfficiencyLifetimeTechnology2015\$170042.5%40,000h5 kW Dist Gen Sys2020\$1500>45%60,000h5 kW Dist Gen Sys

Budget

Total: \$2.3M Received FY12: \$650K Expected FY 13: \$748K Partners Topsoe Fuel Cell

Fuel Cell Energy/Versa Power Impact Washington

Relevance: Public Benefits; H₂ from Diverse Sources

Addressing DOE Barriers and Targets: Environmental Quality & Energy Security

The full benefits from fuel cells are possible only if the feedstock for hydrogen production is a renewable, domestically produced commodity that does not compete in the food chain, and does not increase the price of energy

Our technology will address these issues by:

- Helping shift the primary energy source for H₂ from fossil fuels to renewable non-food biomass, using natural gas as the bridge.
- Using less fuel through high system efficiency by effective thermal integration and off-gas recycling.
- Providing an alternative method for distributed power generation near the source of the feedstock, enhancing grid stability at competitive cost.

Relevance: Project Objectives

Year	Objective	DOE Barriers Addressed
2011 Complete	Establish design to meet technical and operational needs for distributed energy production from renewable fuels	SOFC power using renewable non-food biomass fuel; codes & standards
2011/ 2012 Complete	Design, optimize, and integrate proprietary system components and balance-of-plant in a highly efficient design.	Demonstration; system efficiency; design for low cost manufacturing
2013/ 2014 Not started	Demonstrate the technical and commercial potential of the technology for energy production, emissions reduction, and process economics	 40,000 h lifetime 99% availability >40% efficiency \$1700/kW equipment cost

Approach: Project Goal

Develop and demonstrate a fuel cell distributed energy system that operates with 2nd generation biofuel.

- System based on InnovaTek's steam reforming process and SOFC
- Non-food biofuels include pyrolysis oil and bio-kerosene processed locally
- System to be demonstrated in Richland's renewable energy park and tied to grid

Approach: Milestones & Go/No Go

Date	Milestone or Go/No Go	Status
Jan 2013	M4: Achieve 40% system operating efficiency with revised/optimized system design	41%
Feb 2013	M5: System performance proves superior energy efficiency & emissions reductions compared to conventional technology	Complete
March 2013	Go/No Go: Analysis of process economics supports commercial feasibility (Cost of power is competitive)	Complete
Oct 2013	Complete fabrication of Gen3 prototype for field demonstration	Not started
March 2014	Complete 6 months of field demonstration	Not started

Approach: Optimization & Economic Analysis

- 1. Use simulation and modeling studies to optimize system design for performance and cost reduction.
 - Optimize process configuration using MathCAD and FEMLAB
 - Conduct FMEA to assess necessary redesign, determine maintenance requirements and costs, lifetime
 - Conduct DFMA analyses to identify design changes to improve manufacturability and reduce production & operation costs
 - Use HOMER model to assess cost of power
- 2. Translate dimensions, geometries, and flow patterns defined from optimization modeling to 3-D CAD images
- 3. Complete Bill of Materials & SolidWorks drawing libraries for all original hardware designs and BOP
 - Use this information to model capital equipment costs and parasitic power requirements

Approach: Scale-up & Optimize Core Technology

InnovaGen® Fuel Processor for 4 kW power

2012 2013 Size reduced, output increased

- Creates hydrogen from a range of liquid and gaseous fuels with high energy density
- Proprietary catalyst & hardware
- Water neutral steam reformer
- Compact and efficient

Solid Oxide Fuel Cell

Transitioning to scaled-up SOFC

Approach: Economic Analysis Models

Accomplishments: Developed Highly Efficient Thermally Integrated System Design

Process Flow Diagram

Subdivided into 21 process streams

Mass and Energy Balance

- Completed for each process stream
- Determines input, output, efficiency

Optimized Layout, Piping & Instrumentation

Solid Model of Integrated System Milestone 3

Component Design and Analysis

- Process simulations
- Design trade-off analyses

5kW fuel cell system that operates on liquid bio-fuel

Accomplishments: Solid Model 4 kW

Accomplishments: 41% System Efficiency

Gross DC Power, kW	4.2
Current density, mA/cm ²	390
Cell active area, cm ²	550
Stack current, A	214.5
Cell voltage, volt	0.82
Number of cells	24
gross DC power, watt	4221
stack electrical efficiency	65.60%
parasitic power, watts	300
Net AC electrical efficiency	40.8%

Improved from last year (37.5%) due to:

- Better stack efficiency
- Lower parasitic power due to lower stack pressure drop
- Less waste heat loss through improved thermal integration and heat transfer
- Higher methane content in reformate

Accomplishments: Catalyst Durability

Accomplishments: Analysis of Energy Cost

Adapted EERE's HOMER Model for fuel cell system

- Examined several scenarios for delivering 5 kW electrical AC power for 10 years using InnovaGen FC power unit
- Compared bio-kerosene & natural gas
- Capitol and operating costs based on Bill of Materials and Testing
- Used projected production and fuel pricing data from DOE sources

Significant Findings:

- 1. Our fuel cell generator operating on natural gas could produce electricity at prices at or below current grid prices (<\$0.09/kWh) when volume production brings capital costs down.
- 2. The price for liquid bio-fuel, estimated at \$3.50 per gallon, is the dominant factor affecting cost of electricity when operating on bio-fuel.

Progress: Economic Analysis for 5 kW FC

Cost of energy using InnovaTek's 5 kW fuel cell system with n.gas at current & forecasted spot price

Cost of energy using InnovaTek's 5 kW fuel cell system using bio-kerosene with Honeywell's projected price

DOE Program Review 5-14-13

Progress: 32% Cost Reduction Fuel Processor

Old Design

New Design

System Cost Material Cost T	Total Cost	Parts	Approx volume (L)
ginal Design \$10,201 \$4951	\$15,152	159	13.87
/ised Design \$6,374 \$3997	\$10,371	66	6.88
/ised Design \$6,374 \$3997	\$10,371		66

Progress: 79% Cost Reduction Fluid Handling

Air Handling Subassembly

Feed Handling Subassembly

Fuel Handling Subassembly

	Docian	Labor	Material	Total	Dorto
	Design	Cost	Cost	Cost	Fails
	Original	\$210	\$2,630	\$2,840	136
Air Delivery	Revised	\$22.50	\$762	\$785	16
Fuel & Fuel	Original	\$390	\$11,573	\$11,963	118
Delivery	Revised	\$60	\$2,230	\$2,290	25

Collaborations

Subcontractors

- Fuel Cell Energy Versa Power SOFC (within DOE H₂ Program)
- Boothroyd Dewhurst Design for Manufacturing & Assembly training
- Manufacturing partners shift from welding to brazing

Strategic Partners

- Impact Washington manufacturing design support
- PNNL provided upgraded bio-oil made from non-food biomass (within DOE H₂ Program)
- Honeywell UOP provides bio-kerosene
- City of Richland Electric Utility providing site for field demo
- Mid-Columbia Energy Initiative

Education

Supported 3 student interns from WSU, U of WA, Delta HS in mechanical engineering and chemistry

Proposed Future Work

Objective 3. Prove the technical and commercial potential of the technology

FY13

- Optimize performance by testing & adjusting operating parameters
- Further improve system efficiency & durability; reduce cost
 - Enhance FC-FP integration; evaluate BOP alternatives
- FY14
- Fabricate and assemble fully integrated grid-ready 5 kW system
- Verify performance and durability with 6 month field demo at City Utility
- Analyze process economics

Summary

Relevance: Shift primary energy from fossil to renewable fuels

- Address codes & standards for fuel cells
- Increase system efficiency, lifetime and durability; decrease cost
- Distributed power production near source of feedstock to enhance grid stability
- Approach: Develop reformer that generates hydrogen from non-food biofuels
 - Develop highly efficient processing design of integrated SOFC and fuel processor
 - Prove technology in long-term field demonstration with utility partner

Accomplishments: Achieved 41% system efficiency

- Used simulation and modeling to optimize component & system designs
- Prepared solid model of system & complete Bill of Materials with P&ID
- Developed optimized catalyst for biofuel reforming; demonstrated >900hrs durability
- Determined capital and operating expenses; modeled process economics

Collaborations: Supported 3 students; Subcontractors for fuel cell & manufacturers;

- Partnerships with PNNL, WSU, Boeing, City of Richland, Regional Energy Initiative **Future:** Complete laboratory tests with 4 kW prototype
 - Fabricate prototypes for grid interconnect
 - Conduct field demonstration and long term operation
 - Complete further analysis of process economics

Technical: System Efficiency Algorithms

system efficiency (electrical efficiency)

$$\begin{split} & P_{\text{parasitic}} \coloneqq 300W & \text{D}\mathcal{C}_{\text{gross}}(\mathbf{I}_d) = 4.221 \times 10^3 W \\ & \text{regulated DC power} & \eta_{\text{dc}_dc} \coloneqq 95\% \\ & \mathcal{D}\mathcal{C}_{\text{reg}}(\mathbf{I}_d) \coloneqq \mathcal{D}\mathcal{C}_{\text{gross}}(\mathbf{I}_d) \cdot \eta_{\text{dc}_dc} & \eta_{\text{dc}_ac} \coloneqq 92\% \\ & \text{net DC power} & \mathcal{OCV}_{\text{HHV}} \coloneqq 1.48 \text{volt} \\ & \mathcal{D}\mathcal{C}_{\text{net}}(\mathbf{I}_d) \coloneqq \mathcal{D}\mathcal{C}_{\text{reg}}(\mathbf{I}_d) - \mathcal{P}_{\text{parasitic}} & \mathcal{OCV}_{\text{LHV}} \coloneqq 1.25 \text{volt} \\ & \text{net AC power} & \eta_{\text{volt}} \coloneqq \frac{\text{Volt800}_{\text{cell}}}{\mathcal{OCV}_{\text{LHV}}} = 0.656 \\ & \mathcal{A}\mathcal{C}_{\text{net}}(\mathbf{I}_d) \coloneqq \mathcal{D}\mathcal{C}_{\text{net}}(\mathbf{I}_d) \cdot \eta_{\text{dc}_ac} & \eta_{\text{volt}} \coloneqq \frac{\text{Volt800}_{\text{cell}}}{\mathcal{OCV}_{\text{LHV}}} = 0.656 \\ & \eta_{\text{ele}} \coloneqq \frac{\mathcal{A}\mathcal{C}_{\text{net}}(\mathbf{I}_d)}{\mathcal{L}\text{HV}_{\text{spk}} \cdot (n_{\text{feed}} + n2) \cdot MW_{\text{spk}}} = 40.793 \cdot \% \\ & \eta_{\text{ele}} = 0.408 \\ \\ & \eta_{\text{fps}} \coloneqq \frac{\text{LHV}_{h2} \cdot N_{\text{anode}_in_3} + \text{LHV}_{ch4} \cdot N_{\text{anode}_in_0} + \text{LHV}_{co} \cdot N_{\text{anode}_in_1}}{\mathcal{L}\text{HV}_{\text{spk}} \cdot (n_{\text{feed}} + n2) \cdot MW_{\text{spk}}} = 112.977 \cdot \% \end{split}$$

