

1

Stationary and Emerging Market Fuel Cell System Cost Analysis – Material Handling Equipment FC097

Vince Contini, Fritz Eubanks, Jennifer Smith, Gabe Stout, and Kathya Mahadevan

Battelle 05/14/2013

Washington D.C.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview – Program Details

	Tim	eline		Budget (DO	E Project Funding)
Start			End	\bigcirc	🔵 Total
Nov 2011	FY12 90% Comp	oleted	July 2016	\$541K FY12 Fund	\$2 M ding
Collab have	orators provided des	ian inputs	s, cost inpu	FY13 Fund	ding \$250K nanufacturing cost review
	Ludrogonioo		vn •	Bulk Molding Compound	s • 3M
• F	iyarogenics		vii -		
• N	lexTech	 Delp 	ni •	American Durafilm	 Sono lek
• B	Ballard	Nuve	era •	Metro Mold and Design	

Barriers Addressed					
Cost reduction of fuel cell components and materials	Manufacturing capability	Customer acceptance			

Relevance – Program Objective

5-year program to assist DOE in developing fuel cell systems for stationary and emerging markets by developing independent models and cost estimates

- Applications Primary (including CHP) power, backup power, APU, and material handling equipment
- Fuel Cell Types 80°C PEM, 180°C PEM, SOFC technologies
- Annual Production Volumes 100, 1K, 10K, and 50K (only for primary power systems)
- Size 1, 5, 10, 25, 100, 250 kW

In fiscal year 2012 ...

- 10 and 25 kW PEM Fuel Cells for Material Handling Equipment (MHE) applications (Cost Assessment 100% Complete)
- 1 and 5 kW SOFC for Auxiliary Power Unit (APU) applications (Cost Assessment ~90% Complete)

Relevance – Technical Barriers Addressed

Technical Barriers	Project Goals		
Cost reduction of fuel	1. Identify major contributors to fuel cell system cost		
cell components and materials	2. Quantify potential cost reduction based upon technological improvements		
	 Identify major contributors to fuel cell system manufacturing cost 		
Manufacturing capability	 Identify areas for manufacturing R&D to improve quality and/or throughput 		
	5. Provide basis for consideration of transition from other industries		
Customer acceptance	 Develop accurate cost projections that can be used to evaluate total cost of ownership and facilitate early market adoption 		

Approach – Manufacturing Cost Analysis Methodology

Market Assessment	System Design	Cost Modeling	Sensitivity & Life Cycle Cost Analysis
 Characterization of potential markets Identification of operational and performance requirements Evaluation of fuel cell technologies relative to requirements Selection of specific systems for cost modeling 	 Conduct literature search Develop system design Gather industry input Size components Gather stakeholder input Refine design Develop BOM Define manufacturing processes Estimate equipment requirements 	 Gather vendor quotes Define material costs Estimate capital expenditures Determine outsourced component costs Estimate system assembly Develop preliminary costs Gather stakeholder input Refine models and update costs 	 Sensitivity analysis of individual cost contributors Life cycle cost analysis to estimate total cost of ownership

Progress & Accomplishments – FY 12

 Completed the manufacturing cost analysis for PEM fuel cells for material handling applications

- Presented these results at the Fuel Cell Seminar

- For SOFC systems for truck APU applications
 - Completed the system design
 - Performed DFMA[®] analysis of the stack and finalized stack costs
 - Balance of Plant cost analysis underway

Progress & Accomplishments – PEMFC System Design Basis for MHE Cost Analysis

Progress & Accomplishments – Additional Design Details

Component	Specification
Fuel (Anode)	 99.95% H2, fueled at a centralized plant location Fuel stored onboard at 350 bar No humidification Regulated to 2 psig pressure at the stack Recirculation with periodic purges
Air (Cathode)	 Filtered for particulates and chemicals (passive) Humidification Flow is 2.5X stoichiometric
Cooling	Liquid cooled (low conductivity glycol/de-ionized water mixture in a closed-loop)
Electric	 48 VDC regulated output Buck DC/DC converter Hybridized system with Li-ion technology to supply short bursts of peak power Peak power requirements nominally 300% of net fuel cell power, last for 3–5 sec
General	 10,000 hr lifetime Includes ballast to maintain comparable system weight with competitor products

Progress & Accomplishments – MHE PEMFC System Specification

Parameter	10 kW System	25 kW System	
Power Density (W/cm ²)	0.0	65	
Current Density (A/cm ²)	1.	0	
Cell Voltage (VDC)	0.65		
Active Area Per Cell (cm ²)	200	400	
Net Power (kW)	10	25	
Gross Power (kW)	11	27.5	
Number of Cells (#)	85	106	
Full Load Stack Voltage (VDC)	55 69		
Membrane Base Material	PFSA, 0.2mm thick, PTFE reinforced		
Catalyst Loading	0.6 mg Pt/cm ² (total)		
	Cathode is 2:1 relative to Anode		
Catalyst Application	Catalyst ink prepared, sprayed deposition, heat dried, deca		
	transfer		
Gas diffusion layer (GDL) Base Material	Carbon paper 0.2 mm thick		
GDL Construction	Carbon paper dip-coated with	PTFE for water management	
Membrane electrode assembly (MEA) Construction	Hot press and die cut		
Seals	1 mm silicone, die cut		
Stack Assembly	Hand assembled, tie rods		
Bipolar Plates	Graphite composite, compression molded		
End Plates	Machined cast aluminum		

Battelle

The Business of Innovation

Progress & Accomplishments – PEMFC Stack Manufacturing Process Overview

Progress & Accomplishments – Methodology for Calculating Manufacturing Costs

- Use the Boothroyd-Dewhurst estimating software
- Employed standard process models whenever they exist
- Developed custom models as needed

ile Edit Analysis View Reports Graphs Tools Help	, (la) (3) 🌮 🤊	
Platinum part produced by Catalyst Decal Transfer Catalyst Decal Transfer Catalyst ink preparation Spray coat cathode to substrate Decal transfer	Part width, mm Part length, mm Batch size Total catalyst loading, mg/cm^2	175.000 234.000 21,250 0.6
Original	Cathode Anode loading ratio	2
Cost results, \$ Previous Current <u>Calculate</u> material 27.22 27.22 setup 0.03 0.03 process 0.15 0.12 rejects 0.60 0.60	Energy cost, \$/kW-hr Machine rate, \$/hr Labor rate, \$/hr Overall plant efficiency, %	0.07 25 45 85
piece part 27.99 27.97 tooling 0.00 0.00 total 27.99 27.97	Part surface area, cm ²	409.500
Tooling investment 0 0	Coated length, m	3,718.75
These results are not based on a standard cost model from Boothroyd Dewhurst, Inc. They are based on a user process cost model added by Battelle.	Picture	Scale to fit Transparent

- Custom Model Development Process
 - Develop model approach and process flow
 - Perform preliminary model analysis
 - Inputs and calculations required to produce cost outputs
 - Independent verification of viability and accuracy
 - Implement model in Boothroyd
 Dewhurst DFMA[®] tool
 - Develop model code
 - Validate model results against preliminary cost analysis results

Ratte

The Business of Innovation

Progress & Accomplishments – Manufacturing Processes Evaluated

Process	Method Evaluated	Alternatives Not Evaluated
Catalyst Deposition	Spray coating	Slot die coatingTape castingNanostructure Thin Film
	Single layer with decal transfer	 Dual head slot die
Bipolar Plate	Compression molding	 Die stamping & coating
MEA Forming	Ruler blade die cutting	 Laser cutting
Gasket FormingRuler blade die cutting• L• Ir		Laser cuttingInjection molding

Progress & Accomplishments – Major Stack Material and Process Assumptions

Material	Cost (\$)	Measure
Platinum	1,390	troy oz
Nafion [®] NR50	2,750 - 1,100	kg
Carbon powder	18	kg
Membrane	250 - 180	m²
GDL	95 - 60	m²
BMC 940 for Bipolar Plate	2.43	kg
A-356 Cast Aluminum	2.54	kg

Process Assumptions	Value
Scrap rate	Varies
Inspection steps included in processing	None
Labor cost	\$45/hr
Machine cost*	\$25/hr
Energy cost	\$0.07/kW-h
Overall plant efficiency	85%
Operators per line	1

*note that energy cost of high power machines is included in processing cost

- Catalyst ink composition
 - 32% platinum
 - 48% carbon powder
 - 20% Nafion[®]

- Catalyst loading
 - Anode: 0.2 mg/cm²
 - Cathode: 0.4 mg/cm²
- Scrap rates
 - Bipolar plates: 2.5%
 - Catalyst application: 2.5%

Battelle

- MEA hot pressing: 3.0%
- Gasket die cutting: 0.5%
- End plates: 0.5%

Progress & Accomplishments – Capital Cost Assumptions

Capital Cost	Unit Cost (2012\$)	Units	Total Cost (2012\$)	Assumption/Reference
				Includes Electrical Costs (\$50/sq ft)
Factory Total Construction	250	\$/sq ft	855,750 to 5.545.000	 Total plant area based on line footprint plus 1.5x line space for working space, offices, shipping, etc.
Cost			3,343,000	 Varies with anticipated annual production volumes of both 10 kW and 25 kW stacks
Production Line Equipment Cost	Varies by component		1,492,270 to 12,327,330	 Varies with anticipated annual production volumes of both 10 kW and 25 kW stacks
Forklifts	25,000	\$/lift	50,000	 Assumes 2 forklifts with extra battery and charger
Cranes	66,000	\$/crane	198,000	• 5 ton crane, 20' wide per line
Real Estate	125,000	\$/acre	125,000	 Assumes 1 acre of vacant land, zoned industrial Columbus, OH
Contingency	10% Capital Cost		272,102 to 1,871,833	Construction estimation assumption
Total			2,993,122 to 20,590,163	 Varies with anticipated annual production volumes of both 10 kW and 25 kW stacks

Progress & Accomplishments – 10 kW MHE PEMFC Stack Manufacturing Cost

Stack Component	100 Units (\$)	1000 Units (\$)	10,000 Units (\$)
Bipolar plates	726	725	724
MEA	3,333	2,964	2,415
Cooling gasket	139	139	139
Tie rods and hardware	40	40	40
End plates	54	54	54
Stack assembly	65	52	50

Note: All costs include manufacturing scrap

Progress & Accomplishments – 10 kW MHE PEMFC BoP Manufacturing Cost

BOP Component	100 Units (\$)	1,000 Units (\$)	10,000 Units (\$)
Battery	8,500	6,000	5,000
Hydrogen Tank	3,494	3,373	3,373
DC/DC Converter (Power)	3,450	2,900	1,996
H2 Recirc Blower & Controller	1,595	469	431
Humidifier	1,595	1,276	1,085
Hydrogen Regulator	1,400	1,200	1,000
Radiator	625	500	425
Blower (Cathode Air)	629	503	440
Other Components	4,184	3,458	3,006
Additional Work Estimate	1,800	1,400	1,100
System Assembly	58	46	45

BOP of (10,000) 10kW Units Note: Battery , DC/DC Converter ,H2 Storage & Fittings Not Included

Progress & Accomplishments – 10 kW MHE PEMFC System Cost Summary

Description	100 Units	1,000 Units	10,000 Units
Total stack manufacturing cost, with scrap	\$4,357	\$3,974	\$3,422
Stack manufacturing capital cost	\$2,825	\$283	\$74
Balance of plant	\$27,272	\$21,079	\$17,856
System assembly, test, and conditioning	\$279	\$267	\$266
Total system cost, pre-markup	\$34,733	\$25,603	\$21,618
System cost per gross KW, pre-markup	\$3,158	\$2,328	\$1,965
Sales markup	50.0%	50.0%	50.0%
Total system cost, with markup	\$52,100	\$38,405	\$32,427
System cost per gross KW, with markup	\$4,736	\$3,491	\$2,948

Progress & Accomplishments – 25 kW MHE PEMFC Stack Manufacturing Cost

Stack Component	100 Units (\$)	1,000 Units (\$)	10,000 Units (\$)
Bipolar plates	1,461	1,475	1,457
MEA	6,887	6,138	4,941
Cooling gasket	280	280	280
Tie rods and hardware	40	40	40
End plates	80	80	80
Stack assembly	68	54	53

Note: All costs include manufacturing scrap

Battelle

Progress & Accomplishments – 25 kW MHE PEMFC BoP Manufacturing Cost

BoP Component	100 Units (\$)	1,000 Units (\$)	10,000 Units (\$)
Battery	17,000	12,000	10,000
DC/DC Converter (Power)	8,915	7,718	6,024
Hydrogen Tank	3,494	3,373	3,373
Humidifier	2,500	2,000	1,700
H2 Recirc Blower & Controller	1,595	469	431
Hydrogen Regulator	1,400	1,200	1,000
Blower (Cathode Air)	1,260	1,010	885
Radiator	750	591	503
Other Components	4,503	3,710	3,198
Additional Work Estimate	3,100	2,500	2,000
System Assembly	58	46	45

Battery

- DC/DC Converter (Power)
- Hydrogen Tank
- Humidifier
- H2 Recirc Blower & Controller
- Hydrogen Regulator
- Blower (Cathode Air)
- Radiator
- Additional Work Estimate
- Other

Battelle

Progress & Accomplishments – 25 kW MHE PEMFC System Cost Summary

Description	100 Units	1,000 Units	10,000 Units
Total stack manufacturing cost, with scrap	\$8,815	\$8,068	\$6,851
Stack manufacturing capital cost	\$2,825	\$307	\$121
Balance of plant	\$44,517	\$34,571	\$29,114
System assembly, test, and conditioning	\$279	\$267	\$266
Total system cost, pre-markup	\$56,436	\$43,213	\$36,352
System cost per gross KW, pre-markup	\$2,052	\$1,571	\$1,322
Sales markup	50%	50%	50%
Total system cost, with markup	\$84,654	\$64,820	\$54,528
System cost per gross KW, with markup	\$3,079	\$2,357	\$1,983

Battelle **Progress & Accomplishments –** Sensitivity Analysis of 10 kW MHE PEMFC Stack

Sensitivity Analysis: 10 kW Stack Cost 10,000 Production Volume

X-axis is cost of fuel cell stack. Numbers in brackets are the values of the cost drivers.

Innovation

Progress & Accomplishments -Comparison to Automotive Studies

2010 DTI Automotive Update – Key Characteristics		
Active cells per stack	369	cells
Cell voltage at max power	0.676	V/cell
Membrane power density at max power	0.833	W/cm ²
Active area per cell	285.84	cm ²
Total area per cell	357.3	cm ²
Ratio of active area to total area	0.80	
Catalyst loading	0.15	mg/cm ²
Gross power per stack	87.91	kW
Net power per stack	80	kW

Battelle MHE – Key Characteristics			
Active cells per stack	66	cells	
Cell voltage at max power	0.65	V/cell	
Membrane power density at max power	0.65	W/cm ²	
Active area per cell	200	cm ²	
Total area per cell	409.5	cm ²	
Ratio of active area to total area	0.49		
Catalyst loading	0.6	mg/cm ²	
Gross power per stack	11	kW	
Net power per stack	10	kW	

The lowest automotive manufacturing volume in the 2010 DTI report is 1,000 systems which requires the manufacture of 369,000 cells. This is equivalent to Battelle MHE system annual production volumes of: (369 / 66) × 1,000 = 5,591 systems

Material Cost/Assumptions Adjusted for Comparison Purposes			
Material/Assumption	aterial/Assumption Cost		
Platinum	\$1,100	/tr.oz.	
Platinum loading	0.15	mg/cm ²	
Nafion [®]	\$2,000	/kg	
Membrane	\$224.45 /m ²		
GDL	\$71.83	/m ²	

	Battelle	DTI
	NILL	Automotive
Stack cost per kW _{gross}	\$158	\$145
Stack cost per kW _{net}	\$174	\$159

Battelle The Business of Innovation

Progress & Accomplishments – MHE PEMFC System BoP Cost Drivers

1. Energy Storage

3. Electronics & Controls

2. H_2 Fuel Storage

Avenues for BoP Cost Reductions:

- Alternative hydrogen storage (i.e. All steel tank)
- Eliminate DC/DC converter
- Battery improvements
- Cathode humidification redesign or complete elimination

Opportunity for Cost Reduction – Use of All Steel Tank for H2 Storage

Component	Annual Production Rate			
Description	(1)	(100)	(1,000)	(10,000)
Composite H ₂ Tank	\$4,000	\$3,494	\$3,373	\$3,373
All-Steel H ₂ Tank	\$846	\$804	\$754	\$731
Savings	\$3,154	\$2,690	\$2,619	\$2,642

Progress & Accomplishments – Life Cycle Cost Analysis Assumptions

	Fuel Cell	Battery
Cost of Forklift Only (\$)	25,000	25,000
Cost of Power System (\$)	35,000	5000 (each forklift has 2 batteries)
Hours of Operation per Year (hours)	3,000	3000
Total Number of Shifts	2	2
Hours per Shift	4.4	4.4
Average Operating Time w/o	7.5	4
Refueling/Recharging (hours)		
Time for Refueling (min)	3.3	-
Time for Changing out Batteries (min)	-	30
Costs of Battery Charging Infrastructure	-	2500
(\$ per Truck)		
Number of Times Fuel Cell	2	2
Refueled/Battery Changed During Day		
Cost of Refueling/Recharging (\$)	612 ^a	5,100
Electricity/Hydrogen Fuel Costs (\$)	4,800 ^b	980°
Fuel Cell/Battery Replacement Costs	15,600 ^d	5,000 (X 2 as each forklift has 2 batteries)
Every 3 Years (\$)		

a. Assumes operator cost of \$15/hr. Refuel the fuel cell twice. Replace the battery twice

b. Assumes that truck uses 0.2 kg/operational hour. Operates for 3000 hours. Cost of hydrogen is \$8 per kg.

c. Assumes electricity use is ~3kWh, batteries are charged for 8 hours. Two batteries are replaced every day, 340 days a year.

d. Replacing only fuel cell stack and battery pack. Based on cost of manufacturing 10 kW fuel cell stack.

Progress & Accomplishments – Life Cycle Cost Analysis Results

Net Present Value Analysis of Fuel Cell and Battery Powered Forklifts for 2 Shift Operations for Approximately 9 hours Per Day

	Fuel Cell Powered Fork Lift	Battery Powered Forklift
NPV of Capital Costs (\$)	95,407	60,251
NPV of O&M Costs (\$)	52,610	59,104
NPV of Total Costs of the System (\$)	148,017	119,355

Net Present Value Analysis of Fuel Cell and Battery Powered Forklifts for 3 Shift Operations for Approximately 16 hours Per Day

	Fuel Cell Powered Fork Lift	Battery Powered Forklift
NPV of Capital Costs (\$)	95,407	94,555
NPV of O&M Costs (\$)	95,518	124,535
NPV of Total Costs of the System (\$)	190,925	219,091

Progress & Accomplishments – Results Summary

- For MHE applications, BoP component costs driving total system cost
- Production volume has negligible effect on stack cost
 - Precious metal, graphite composite and commodity cost constant across all volumes
 - Material processing requirements limit throughput
- For fuel cells to penetrate MHE applications further cost reduction is required as demonstrated by LCA analysis

Proposed Future Work

FY13	FY14, FY15, FY16
 Complete assessment 1 and 3 kW of SOFC systems for APU applications 	 Complete additional new analyses – CHP systems, Primary power systems
 Complete updating assessment of backup power systems 	 Revisit and update previous analyses based upon technological advancements

Summary

- Relevance: Help answer questions on opportunities for cost reduction to penetrate non-automotive applications
- Approach: Perform cost modeling including DFMA[®] analysis of a generic fuel cell system design developed for the application
- Technical Accomplishments and Progress: Completed cost analysis of PEMFC for MHE applications. Cost analysis of SOFC for APU applications underway
- Technology Transfer/Collaborations: Working with a number of industry collaborators (e.g., Ballard, Hydrogenics, Nuvera) for design inputs, cost inputs, design review and results review
- Proposed Future Research: Complete cost analysis of SOFC (1 and 5 kW) for APU applications and update cost analysis of backup power systems