

Project ID #

FC098

A Total Cost of Ownership Model for Design and Manufacturing Optimization of Fuel Cells in Stationary and Emerging Market Applications

> Department of Energy Annual Merit Review for Fuel Cell Research Arlington, Virginia May 14, 2013

Max Wei (Co-P.I.) Thomas McKone (P.I.) Lawrence Berkeley National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

AWRENCE BERKELEY NATIONAL LABORATORY

Overview

Timeline

- Project start date: Oct 2011
- Project end date: Sept 2016
- Percent complete: 30%

Budget

- Total project funding
 - DOE share: \$1.9M
 - Contractor share: n.a.
- Funding received in FY11: \$100K
- Funding received in FY12: \$500K
- Planned Funding for FY13: \$560K

DOE Cost Targets

Characteristic	2015 Target	2020 Target
10kW CHP System	\$1900/kW	\$1700/kW
100kW CHP System	\$2300/kW	\$1000/kW

Barriers Addressed

- Fuel-cell cost: expansion of cost envelope to total cost of ownership including full life cycle costs and externalities (*MYPP 3.4.5B*)
- Lack of High-Volume Membrane Electrode Assembly Processes (*MYPP 3.5.5A*)
- Lack of High-Speed Bipolar Plate Manufacturing Processes (MYPP 3.5.5B)

Partners

- University of California Berkeley
 - Department of Mechanical Engineering Laboratory for Manufacturing and Sustainability
 - Transportation Sustainability Research Center
- Ballard Power Systems
- Strategic Analysis
- Other Industry Advisor (Altergy)

Relevance & Goals

BERKELEY LAB

Total-cost-of-ownership (TCO) modeling tool for design and manufacturing of fuel cells in stationary and materials-handling systems in emerging markets

Expanded framework to include life-cycle analysis (LCA) and possible ancillary financial benefits, including:

 carbon credits, health/environmental externalities, end-of-life recycling, reduced costs for building operation

Identify system designs that meet lowest manufacturing cost and TCO goals as a function of application requirements, power capacity, and production volume

Provide capability for sensitivity analysis to key cost assumptions

BARRIERS

- High capital and installation costs.
- Potential policy and incentive programs may not value fuel cell (FC) total benefits.

Overview: Chemistries and Applications

- Fuel cell types to be considered:
 - -Conventional, low-temp (~80°C) PEM fuel cell (LTPEM)
 - —High-temp (~180°C) PEM fuel cell (HTPEM)
 - —Solid oxide fuel cell (SOFC)
- Application Space:

APPLICATION	SIZE [KW]	PRODUCTION VOLUME (UNITS/YEAR)						
		100	1000	10,000	50,000			
STATIONARY POWER /	1	C,B	C,B	C,B	C,B			
COMBINED HEAT AND POWER (C)	10	C,B	СВ	C,B	C,B			
	50	C,B	C,B	C,B	C,B			
BACKUP POWER (B)	100	С	С	С	С			
	250	С	С	С	С			

Research and Modeling Approach: Task Flow

AWRENCE BERKELEY NATIONAL LABORATORY

Research and Modeling Approach: Inputs and Tools

rrrr

LAWRENCE BERKELEY NATIONAL LABORATORY

Milestones - AOP 2012 / 2013

Task	Description	Status
Task 8.2 (6/12)	Meetings with project Advisory Partner groups	Done
Task 8.2 (6/12)	Develop technical and performance specifications for LTPEM fuel cells and initial applications (Stationary, CHP, and Backup Power)	Done
Task 8.3 (9/12)	Detailed LTPEM design plans and BOMs; including cell stack and balance of plant components plus materials and component requirements and cost estimates.	Done
3/13	Manufacturing cost model completed for LTPEM CHP and BU-Power systems.	Done
6/13	Literature search and functional specs defined for HTPEM CHP and BU-Power systems.	In Progress
9/13	DFMA and Total cost of ownership model completed for LTPEM CHP and BU-Power systems	In Progress

GANTT: 5-year Project Overview

- LT-PEM CHP and BU-Power initial focus
 - Manufacturing Cost Model (PEM CHP, BU-Power) March 2013
 - Total Cost Model (PEM CHP, BU-Power) Sept 2013
 - HTPEM, SOFC to follow

TCO Model Structure and Key Outputs

Costing Approach

Direct Manufacturing Costs

- Capital costs
- Labor costs
- Materials costs
- Consumables
- Scrap / yield losses
- Factory costs

Global Assumptions

- Discount rate, inflation rate
- Tool lifetimes
- Costs of energy, etc.
- Other Costs:
 - R&D costs, G&A, sales, marketing
 - Product warranty costs

Source: Altergy Systems

Technical Accomplishments

CHP System Designs and Specs

Functional specifications completed for 1, 10, 50, 100, 250kW ٠ H2 fuel systems

1

00 kW Size		Best. Ests.	
	Unique Properties:		Units:
/stem	Gross system power	115	kW
	Net system power	100	kW
	Physical size	2.9x4.8x9	meter x meter x meter
	Physical weight	~8,000 kg	kg
	Electrical output	480V AC	Volts AC or DC
	Peak ramp rate	12	kW/sec - size dep
	Waste heat recovery	188400	BTU/hr
	Waste heat grade	65	Temp. °C
	Fuel utilization	9.08	SLPM
so see fn->	Avg. electrical efficiency	38	% LHV
	Thermal efficiency	30	% LHV
	Total efficiency	68	Elect.+thermal (%)
tack	stack power	8.85	kW
	total plate area	360	cm^2
	CCM coated area	232	cm^2
	single cell active area	198	cm^2
	gross cell inactive area	45	%
	cell amps	126	A
	current density	0.64	A/cm^2
	reference voltage	0.7	v
	power density	0.446	W/cm^2
	single cell power	88	W
	cells per stack	100	cells
	percent active cells	100	%
	stacks per system	13	stacks
arasitics	Compressor/blower	4	kW
	Other paras. loads	11	kW
	Parasitic loss	15	%

FUNCT. SPECS – 100kW

CHP System Designs and Specs

 Functional specifications completed for 1, 10, 50, 100, 250kW reformate fuel systems

FUNCT. SPECS - 100kW

.....

BERKELEY LAB

0 kW Size		Best. Ests.	
	Unique Properties:		Units:
stem	Gross system power	116	kW
	Net system power	100	kW
	Physical size	2.9x4.8x9	meter x meter x meter
	Physical weight	~8,000 kg	kg
	Electrical output	480V AC	Volts AC or DC
	Peak ramp rate	12	kW/sec - size dep
	Waste heat recovery	188,400	BTU/hr
	Waste heat grade	65	Temp. °C
	Fuel utilization	9.08	SLPM
so see fn->	Avg. electrical efficiency	38	% LHV
	Thermal efficiency	30	% LHV
	Total efficiency	68	Elect.+thermal (%)
ack	stack power	8.92	kW
	total plate area	360	cm^2
	CCM coated area	232.2	cm^2
	single cell active area	198	cm^2
	gross cell inactive area	45	%
	cell amps	116	A
	current density	0.58	A/cm^2
	reference voltage	0.7	V
	power density	0.409	W/cm^2
	single cell power	81	W
	cells per stack	110	cells
	percent active cells	100	%
	stacks per system	13	stacks
rasitics	Compressor/blower	4	kW
	Other paras. loads	12	kW
	Parasitic loss	16	%

Technical Accomplishments 100 kW PEM Stationary (CHP) – Reformate Fuel

Technical Accomplishments

Back-up Power Designs and Specs

FUNCT. SPECS – 10kW

Best. Ests.

Properties:		Units:
stem power	11	kW
tem power	10	kW
size	0.53 x 0.83 x 1.3	meter x m x m
l weight	172 kg	kg
al output	48V DC	Volts AC or DC
mp rate	1.2	kW/sec
neat recovery		BTU/hr
neat grade		Temp. °C
e rate	120	SLPM
ectrical efficiency	46.5%	% LHV
l efficiency	0	% LHV
ficiency	46.5%	Elect.+thermal (%)
ower	11	kW
ate area	360	cm^2
ated area	232	cm^2
ell active area	198	cm^2
ell inactive area	45	%
os	112	A
density	0.57	A/cm^2
ce voltage	0.70	V/cell
density	0.40	W/cm^2
ell power	79	W
r stack	140	cells
active cells	100	%
er system	1	stacks
	0.5	kW
aras. loads	0.5	kW
c loss	9.1	%

stacks p Blower

Other p Parasiti

Parasitics

Technical Accomplishments Manufacturing Cost Model - Plates

Process Flow

L = 360mm, W = 100mm, T_{max} = 3mm

rrrrr

BERKELEY LAE

Ш

Cost Plot - 100kW system

Key Materials

- Binder (polymer): Polypropylene
- Filler (carbon):
 Graphite + Carbon Black
- Composition: 30wt% PP, 66.5wt% Graphite, 3.5wt% Carbon Black
- Composite density: 1.585 g/cm³
- Composite cost: \$10.259/kg

Technical Accomplishments

Manufacturing Cost Model – CHP H2

100kW CHP System (H2) Stack Assembly Stack 1% 900 Plate 18% 800 BOP 700 MEA Material Scrap (\$/kWnet) 11% CCM **Cost/kW (2013 \$)** 52% Process: Building (\$/kWnet) GDL 18% Process: Operational BOP (\$/kWnet) 300 Process: Capital (\$/kWnet) 200 Labor (\$/kWnet) Stack 100 Hydrogen Direct Material (\$/kWnet) BOP Misc. 0 Components 100 1,000 10,000 50,000 17% 23% Production Volume (Systems/year)

Stack Size (kW)	100												
Production Volume (Systems/yr)	100	1	1,000		1,000		1,000		1,000		0,000	5(0,000
Stack Cost (\$/kWnet)	\$ 426	\$	274	\$	248	\$	236						
BOP (\$/kWnet)	\$ 357	\$	349	\$	343	\$	338						
Total (\$/kW _{net})	\$ 782	\$	622	\$	591	\$	574						

Note: Cost refers to direct manuf. cost and excludes profit, R&D costs, and other corporate costs (sales and marketing, general/admin., warranty, etc.).

Technical Accomplishments

Manufacturing Cost Model – CHP reformate

Stack Size (kW)		100								
Production Volume (Systems/yr)	100		1,000		10,000		50,000			
Stack Cost (\$/kWnet)	\$	466	\$	301	\$	272	\$	260		
BOP (\$/kWnet)	\$	297	\$	291	\$	287	\$	282		
Fuel Processor (\$/kWnet)	\$	335	\$	313	\$	300	\$	288		
Total (\$/kW _{net})	\$	1,098	\$	905	\$	859	\$	830		

1000 systems/yr Note: Cost refers to direct manuf. cost and excludes profit, R&D costs, and other corporate costs (sales and marketing, general/admin., warranty, etc.).

Air Subsystem

Page 17

Stack Size (kW)		10								
Production Volume (Systems/yr)	100		1,000		10,00		50),000		
Stack Cost (\$/kWnet)	\$	1,549	\$	433	\$	290	\$	273		
BOP (\$/kWnet)	\$	647	\$	641	\$	636	\$	631		
Total (\$/kW _{net})	\$	2,196	\$	1,074	\$	926	\$	903		

Note: Cost refers to direct manuf. cost and excludes profit, R&D costs, and other corporate costs (sales and marketing, general/admin., warranty, etc.).

Meters

31%

Power

Subsystem

15%

Ventilation

Fans

2%

10000 systems/yr

Technical Accomplishments

Manufacturing Cost Model – Backup Power

Yield of MEA/Frame, CCM, BPP and Pt price are key factors

Note: Yield is limited to 100% for "+20% case"

Technical Accomplishments Manufacturing Cost Model – Sensitivity (\$/kW)

.....

BERKELEY LAE

DER-CAM Tool for Realistic FC Duty Cycles in CHP Mode:

rrrr

BERKELEY

- LBNL Distributed Energy Resources Customer Adoption Model (DER-CAM) optimization of distributed generation (DG) resource economics in micro-grid context
- Incorporates building load shapes for electricity and heating for given climate zone
- Includes utility tariff structures, demand charges, and electricity marginal carbon intensity
- Allows comparison of fuel cell CHP case vs. conventional "no DG" reference case
- Includes: Capital amortization, natural gas fuel costs, O&M costs, stack replacement costs, avoided utility costs

Technical Accomplishments Life Cycle Cost Example

Climate Zone05 MED-LODGING (San Francisco)

100kW Fuel Cell System

- Annual costs
 - Cap amort \$16.8K
 - O&M \$22.2K
 - Fuel \$48.6K
- Annual Savings vs No DG Case
 - 34% CO2 Emissions
 - 37% Energy Costs

Climate Zone13 MED-LODGING (San Diego)

- 100kW Fuel Cell System
- Annual costs
 - Cap amort \$16.8K
 - O&M \$26.2K
 - Fuel \$48.8K
- Annual Savings vs No DG
 Case
 - 23% CO2 Emissions
 - 20% Energy Costs
 - 59% lower demand charges

Technical Accomplishments San Francisco, Medium Lodging Building

utility electricity consumption electricity provided by battery

Technical Accomplishments San Diego, Medium Lodging Building

electricity generation from PV

Technical Accomplishments

High Temp-PEM Membrane Lit./Patent Review

- Patent search conducted for HT-PEM membrane
- PBI Membrane manufacturing review completed

Relevant Patents:

- Modified Polybenzimidazole (PBI) Membranes for Enhanced Polymer Electrochemical Cells (US Patent 6,987,163 B2 (2006))
- Proton- Conducting Electrolyte Membrane
 Method for Production and use thereof in a Fuel
 Cell (US Patent 7,655,334 B2 (2010))
- High Temperature Membrane Electrode
 Assembly with High Power Density and
 Corresponding Method of Making (US Patent 2011/0244364 A1 (2011))
- Proton Conductive Polymer Electrolyte and Fuel Cell Including the Same (US Patent 8,017,659 B2 (2011))
- Polymer Electrolyte Membrane for Fuel Cell, Method of Manufacturing the Same, and Fuel Cell Employing the Same (US Patent 8,039,166 B2 (2011))

Processing Step	<u>Primary Process</u> Input	Primary Process Outputs
1. Casting	Dimethylacetamide solution, and equilibrated with 11M H3PO4	Cast films
2. Solvent Evaporation	At 60C- 140C	Polymerized cast film
2. Boiling	Water, cast films	Films
3. Doping	Film, phosphoric acid	Acid doped PBI membrane
Processing Step	<u>Primary Process</u> Input	Primary Process Outputs
1. Knife-edge or slot die dep. on sacrificial carrier	PBI powder and DMAc on glass plate	Film formation
2. IR heating 140C	Deposited film	PBI membrane; Multiple passes of 1, 2.
3. Doping	Film, phosphoric acid	Acid doped PBI membrane

Collaborations

• Partners

University of California Berkeley

Laboratory for Manufacturing and Sustainability, Dept. of Mechanical Engineering:

Manufacturing process analysis, DFMA analysis

Transportation Sustainability Research Center and DOE Pacific Region Clean Energy Application Center:

- System and BOP design, funct. specs, BOM definition, parametric relationships
- CHP applications and functional requirements

Ballard Power Systems

— Consultation on fuel cell system design and manufacturing processes

Strategic Analysis:

Fuel processor systems and DFMA costing

Other Collaborators

— Altergy: Consultation on backup power system

FY13-14 Specific Plans :

- LT-PEM CHP, BUP applications: Total Cost of Ownership Model -- Sept 2013
 - Manufacturing cost model enhancements (CCM, metal plates, fuel processor)
 - Life cycle cost profiles for buildings in different geographies
 - o End-of-life Pt recovery
 - o Environmental/health impact valuation
- HT-PEM CHP, BUP applications: Manufacturing Cost model -- March 2014
 - Literature review
 - Functional and stack specifications
 - System design
 - Process flows
 - Component costing / DFMA

- Extension of DER-CAM model to other climate zone in U.S.
 - —16 climates zones
 - 16 building types x 3 vintages
 - Comprehend utility tariff structure
- Northwest/Midwest U.S. Simulation of FCS adoption
 - Output: displaced grid electricity and displaced utility fossil fuel (natural gas, heating oil) + CO2 reduction
 - —DER-CAM Output + Criteria pollutant impact →Input to Lifecycle Impact Assessment Model (LCIA)

Quantifying human health damages

LAWRENCE BERKELEY NATIONAL LABORATORY

Example: monetized health damage from fossil fuel electric power plants

Ref: APEEP website, Nicholas Muller

rrrr

BERKELEY

AWRENCE BERKELEY NATIONAL LABORATORY

Relevance: Provide more comprehensive cost analysis for stationary and materials handling fuel cell systems in emerging markets including ancillary financial benefits.

Approach: Design for manufacturing and assembly (DFMA) analysis cost model and integrated lifecycle cost analysis (LCA) impacts including life cycle costs, carbon credits, and health and environmental benefits

Technical Accomplishments and Progress: System designs, functional specs, and manufacturing cost models for LT-PEM CHP and BU-Power systems. Demonstration of LCC cost modeling with DER-CAM.

Collaboration: Partnerships with UC-Berkeley manufacturing analysis and transportation sustainability research groups and Ballard Power Systems. Collaboration with Altergy and ClearEdge Power, and planned with SA.

Proposed Next-Year Research: Total cost of ownership model for LT-PEM systems and Manufacturing Cost model for HT-PEM system

Max Wei 510-486-5220 mwei@lbl.gov Tom McKone 510-486-6163 TEMcKone@lbl.gov

LAWRENCE BERKELEY NATIONAL LABORATORY

Balance of Plant Components

• Direct costing example, CHP with H2 fuel system

BERKELEY

Balance of Plant - Stationary PEMF	Plant Capacity [in kW]										
Subsytems		250		100		50		10		1	
Subsystem 1: Fuel	Hydrogen Tank	\$	1,280.00	\$	1,198.00	\$	1,174.00	\$	1,096.00	\$	1,096.00
	Hydrogen Purifier	\$	2,226.00	\$	1,785.00	\$	1,207.00	\$	987.00	\$	777.00
	Hydrogen Pump	\$	3,066.00	\$	1,763.00	\$	1,120.00	\$	740.00	\$	388.00
	Hydrogen Pump Motor	\$	2,122.00	\$	1,293.00	\$	781.00	\$	752.00	\$	676.00
	Hydrogen Piping	\$	420.00	\$	210.00	\$	105.00	\$	52.50	\$	26.25
		\$	9,114.00	\$	6,249.00	\$	4,387.00	\$	3,627.50	\$	2,963.25
Subsystem 2: Air	Air Humidfier Tank	\$	2,426.62	\$	1,302.76	\$	794.56	\$	491.23	\$	46.25
	Humidification Pump	\$	639.00	\$	544.00	\$	388.00	\$	315.00	\$	305.00
	Air Pump Motor	\$	3,944.31	\$	1,648.00	\$	559.00	\$	326.00	\$	435.00
	Radiator	\$	2,890.00	\$	2,500.00	\$	2,100.00	\$	1,700.00	\$	1,500.00
	Humidifciation Pump Motor	\$	338.00	\$	258.00	\$	237.00	\$	231.00	\$	226.00
	· · ·	\$	10,237.93	\$	6,252.76	\$	4,078.56	\$	3,063.23	\$	2,512.25
Subsystem 3: Coolant	Coolant Tank	\$	2,186.00	\$	1,598.93	\$	289.39	\$	75.04	\$	68.52
	Coolant Pump Motor	\$	1,682.00	\$	1,155.00	\$	940.00	\$	586.00	\$	549.00
	Coolant Piping***	\$	280.00	\$	140.00	\$	70.00	\$	35.00	\$	21.00
	External Cooling Motor	\$	360.00	\$	271.35	\$	234.00	\$	191.70	\$	170.00
	Heat Exchanger	\$	7,635.00	\$	6,350.00	\$	5,185.00	\$	4,645.00	\$	3,270.00
	Ŧ	\$	12,143.00	\$	9,515.28	\$	6,718.39	\$	5,532.74	\$	4,078.52
Subsytem 4: Power System	Power Inverter	\$	1,299.65	\$	923.96	\$	704.00	\$	132.48	\$	46.53
, ,	Braking Transistors	\$	2,730.10	\$	2,047.00	\$	1,943.00	\$	1,840.00	\$	1,840.00
		\$	4,029.75	\$	2,970.96	\$	2,647.00	\$	1,972.48	\$	1,886.53
Subsystem 5: Controls/Meters	Variable Frequency Drive	\$	3,549.88	\$	1,907.95	\$	1,067.98	\$	528.53	\$	300.13
-	Coriolis Flow Meter* ** (optional)	\$	12,433.00	\$	-	\$	-	\$	-	\$	-
	Thermosets	\$	704.00	\$	704.00	\$	704.00	\$	704.00	\$	704.00
	CPU	\$	1,208.56	\$	1,026.77	\$	774.96	\$	264.50	\$	208.57
		\$	17,895.44	\$	3,638.72	\$	2,546.94	\$	1,497.03	\$	1,212.70
Subsystem 6: Misc. Components	Tubing	\$	2,145.76	\$	604.28	\$	513.39	\$	154.99	\$	132.25
	Wiring	\$	222.48	\$	111.24	\$	55.62	\$	27.81	\$	13.91
	Enclosure/Housing	\$	8,038.92	\$	6,699.10	\$	5,359.28	\$	3,349.55	\$	1,339.82
	Fasterners	\$	184.50	\$	92.25	\$	46.12	\$	23.06	\$	12.23
	Labor Cost	\$	1,000.00	\$	700.00	\$	500.00	\$	200.00	\$	125.00
		\$	11,591.66	\$	8,206.87	\$	6,474.41	\$	3,755.41	\$	1,623.21
Total Cost	\$/system	\$	65,011.78	\$	36,833.59	\$	26,852.30	\$	19,448.39	\$	14,276.46
	\$/kW	\$	260.05	\$	368.34	\$	537.05	\$	1,944,84	\$	14.276.46

AWRENCE BERKELEY NATIONAL LABORATORY

LBNL DER-CAM model / CEUS database

- LBNL DER-CAM Model (Distributed Energy Resources Customer Adoption Model)
- **CEUS database** of Commercial building electrical and thermal demand profiles in California: 90% of total commercial floor space is in buildings with a peak load < 1MW.

Peak Load of Building	Number of Types	Total number in SDG&E	%
100 – 250 kW	4	620	35%
250 – 500 kW	3	574	32%
above 500 kW (***)	9	589	33%
Total		1783	

rrrr

Air Pollution Emissions Experiments and Policy Analysis Model (APEEP)

Nicholas Muller

.....

BERKELEY LAE

- Air quality model predictions calibrated to Community Multi-scale Air Quality model (Byun, Schere, 2006).
 – CMAQ: USEPA CAIR RIA.
- Focus on ambient concentrations of PM_{2.5} and O₃ (dominant health and environmental externalities)
- Limitations of source-receptor matrix approach.
 - Pollution episodes, atmospheric inversions.
 - Spatial resolution: heterogeneity within county receptors.
 - Atmospheric chemistry.
- Advantages of source-receptor matrix approach.
 - Computational efficiency.
 - Model domain & resolution.

APEEP: Baseline PM2.5 (2002)

rrrr

AWRENCE BERKELEY NATIONAL LABORATORY