

2013 DOE Hydrogen and Fuel Cells Program Review

Project ID: FC103

Roots Air Management System with Integrated Expander

Principal Investigator: Dale Stretch Eaton Corporation

May 14, 2013 "This presentation does not contain any proprietary, confidential, or otherwise restricted information."

Overview

Timeline

- Project Start Date: 07/05/2012
- Project End Date: 07/04/2015
- % Complete: 25%

Budget Period	Start Date	End Date
1	07/05/2012	07/04/2013
2	07/05/2013	07/04/2014
3	07/05/2014	07/04/2015

Budget

- Total Project: \$2,627,041
 - DOE Share: \$2,101,630
 - Cost Share: \$525,411
- Funds Obligated: \$2,101,630
 - Funding received in FY12: \$665,226
 - Funding for FY13: \$821,776

Barriers & Technical Targets:

- Air management system drive cycle efficiencies, power & cost
- Cost Target: 2017 = \$500
- Input Power at Idle = 200 W_e
- Compressor/expander efficiency @ 25% flow > 65/70%
- Motor/motor controller efficiency @ full flow > 90%
- Compressor/expander input power @ full flow < 8/14kW

Partners

- Prime: Eaton Corporation
- Subcontractors
 - Ballard Power Systems
 - Kettering University
 - Electricore, Inc.
- Technical Support
 - Argonne National Lab
 - Strategic Analysis

Relevance

Primary Objectives

- Demonstrate key improvements to compressor/expander efficiency, including:
 - Compressor/expander efficiency at 25% flow of >65/70% by 2017 (baseline = 62/64%)
 - Combined motor/controller efficiency at full flow of >90% by 2017 (baseline = 80%)
 - Compressor/expander input power at full flow of <8/14 kW by 2017 (base = 11/17 kW)

Secondary Objectives

- Conduct a cost reduction analysis, 2014 goal is to achieve \$700 cost
- A fully tested and validated (TRL 6) air management system hardware capable of meeting 2017 Project Targets shown in table by project conclusion

Barriers

- Cost: Reduce by ~50%
- Performance: Reduce power by ~30%
- Motor Efficiency: Increase by ~40%
- Compressor Efficiency: Increase by ~5%
- Expander Efficiency: Increase by ~9%

Characteristic		2011 Status	DOE Target 2017	
Input power a at full flow b, (with expander/without expander)	kWe	11.0/17.3	8 / 14	
Combined motor & motor controller efficiency at full flow ^b	%	80	90	
Compressor / expander efficiency at full flow (C/E only) b	%	71/73	75 / 80	
Input power at 25% flow ^c (with expander/without expander)	kW _e	2.3/3.3	1.0 / 2.0	
Combined motor & motor controller efficiency at 25% flow $^\circ$	%	57	80	
Compressor / expander efficiency at 25% flow $^{ m c}$	%	62 / 64	65 / 70	
Input power at idle ^d (with / without expander)	We	600 / 765	200 / 200	
Combined motor / motor controller efficiency at idle ^d	%	35	70	
Compressor / expander efficiency at idle ^d	%	61 / 59	60 / 60	
Turndown ratio (max/min flow rate)		20	20	
Noise at maximum flow (excluding air flow noise @ air inlet & exhaust)	dB(A)	-	65	
Transient time for 10 - 90% of maximum airflow	sec	1	1	
System volume ^e	liters	15	15	
System weight ^e	kg	22	15	
System cost ^f	\$	960	500	

Approach

For PEM fuel cells to achieve acceptance in the vehicle market, **cost and reliability challenges must be met**

- The air supply sub-system has these requirements, plus it has to be efficient
- Current systems have trouble meeting all these objectives
- One reason is due to the high cost & complexity of air bearings used on competing air supply systems
- Second reason is the major challenge of air bearing systems meeting the needed efficiency and durability at 25% flow operation

This project will overcome these barriers by *leveraging recent advancements to, and further develop, the Roots blower by:*

- Leveraging the broad efficiency map of Eaton's TVS compressor to improve the overall drive cycle fuel economy
- Integrating the expander, compressor and motor to reduce system cost and increase system efficiency (new approach, similar to a traditional turbocharger)
- Reducing part count, thus cost, by incorporating overhung expander and motor rotors such that 4 bearings and 2 shafts are used
- Operating at lower speed to leverage lower cost bearings and improve system reliability
- Developing a net shape plastic expander to lower manufacturing costs

Approach – Budget Period 1 Develop Compressor/Expander with Integrated Motor

- Developing CFD capability to accurately model roots compressors & expanders which gives the ability to model many designs to more quickly meet performance and efficiency targets
- Design & build a roots blower mule to be used to ascertain the optimized expander & compressor inlet, outlet and unit size more quickly and with less full hardware builds
- Argonne National Lab will model and analyze compressor and expander performance data and Ballard's FC module data to determine the optimal compressor expander combination to maximize FC module performance
- Optimize compressor
 - ✓ CFD modeling used to optimize compressor inlet, and outlet optimize performance & efficiency
 - Performance data supplied to ANL to optimize compressor
 - Test various compressor configurations to optimize unit for application
- Optimize expander
 - CFD modeling used to optimize expander inlet, and outlet optimize performance, efficiency and unit size
 - ✓ Performance data supplied to ANL to optimize expander
 - ✓ Test various expander configurations to optimize unit for application

Approach – Budget Period 1 con't, 2 & 3

Period 1 – Continued

- Develop compressor/expander assembly with integrated motor drive for reduced cost
 - Design integrated system combines the expander, compressor and motor components to minimize complexity and number of components
 - Integrated design incorporates overhung expander and motor rotors into the design such that only four bearings and two shafts are used
 - ✓ To reduce cost, net shape plastic expander housing and rotors will be developed
 - Design other plastic air system components where applicable and feasible i.e. motor cooling jacket and motor end cover

Period 2 – Subsystem validation

- Prototype Compressor/Expander with Integrated Motor
- ✓ Compressor/Expander with Integrated Motor Performance and Validation Testing at Eaton
- Period 3 Validation Testing of System on 80kW FC Module
- <u>Demonstration of roots based air system performance within the overall Hydrogen and Fuel</u> <u>Cells Application</u>
 - Design & prototype complete system with integrated Ballard FC Stack
 - ✓ Compressor/Expander Validation Testing on Ballard Module
 - Correlate test results to ANL FC model
 - Determine Production Cost Estimates based on final design

Approach Deliverables & Milestones

Deliverable 1.0	Project kick-off presentation with revised project management plan	07/17/2012
Deliverable 2.0	Concept design of the compressor/expander assembly with integrated motor	07/03/2013
1 st DOE Rev.	Project review with DOE & evaluate GO/NO-GO Criteria	07/05/2013
Deliverable 3.0	Final prototype design of the compressor/expander assembly with integrated motor	01/04/2014
Deliverable 4.0	Compressor/expander validation test plan	01/04/2014
Deliverable 5.0	Compressor/expander validation test report	07/04/2014
Deliverable 6.0	OEM Integration and Test Plan	07/04/2014
2 nd DOE Rev.	Project review with DOE & evaluate GO/NO-GO Criteria	07/04/2014
Deliverable 7.0	OEM validation test report	04/04/2015
Deliverable 8.0	Validated air management hardware	06/04/2015
Deliverable 9.0	System cost and manufacturability study	07/04/2015
Deliverable 10.0	Final Report and Presentation	07/04/2015

Accomplishments and Progress

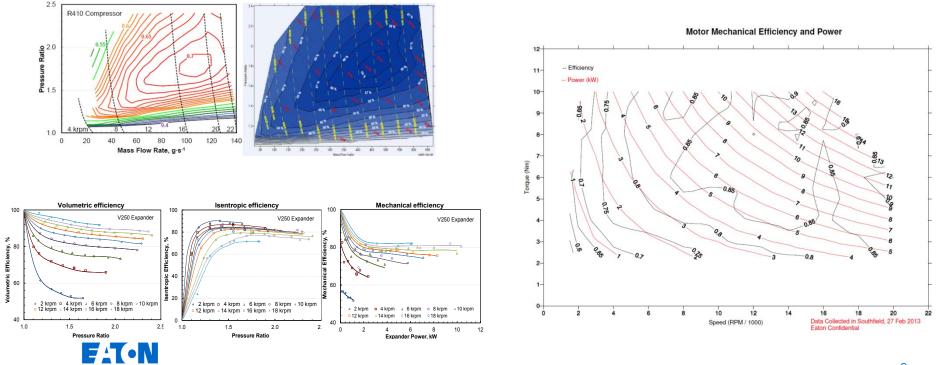
Summary

Optimize Compressor

- Compressor Test Results: Baseline testing has been completed
- Inlet & Outlet CFD: In progress

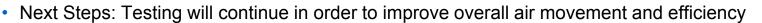
Optimize Expander

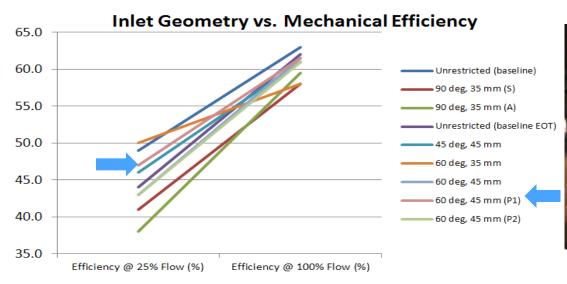
- Inlet & Outlet CFD: Meshing & iterative analysis in process
- Expander Test Stand: Test cell completed and operational, relative humidity and expander inlet temperature control was added
- Expander Test Results: 3 expander units and 8 different inlet configurations have been tested to improve efficiency
- Expander Plastic Rotor Analysis: Design of plastic rotors with integrated aluminum support structure was completed

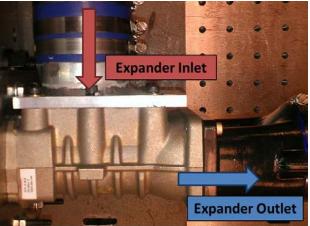

Develop Compressor/Expander Assembly with Integrated Motor

- Rotor Critical Speed Analysis: Initial model meshing completed, boundary conditions set with first frequency analysis finished
- Fuel Cell System Modeling: ANL has successfully updated its compressor and expander models with Eaton current product compressor and expander data

Accomplishments and Progress

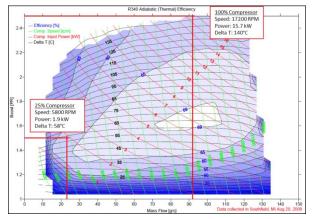

- Eaton provided ANL with compressor, expander and motor maps to incorporate into their system model
 - The compressor map show a close correlation between Eaton's performance data and ANL's modeling data, confirming ANL's model
 - ANL is in process of incorporating Eaton's expander & motor maps into its model

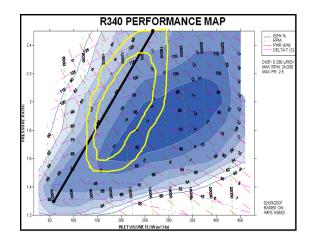



Powering Business Worldwide

Accomplishments and Progress Expander Experimental Test Results

- Tested 3 expanders: 1) R200, 2) V250 Gen 2 and 3) V250 Gen 1 to optimize expander efficiency, baseline testing indicated
 - V250 Gen 2 was better at 25% flow rate but the V250 Gen 1 was better at 100% flow rate, This led us to conclude the rotors in gen 2 were better than gen 1. Therefore, the improved rotor geometry of the V250 Gen 2 will be considered for the final expander design
 - The V250 Gen 1 had the best overall performance, therefore additional testing was focused on this expander
- Additional testing on the V250 Gen 1
 - 8 inlet geometries were tested by varying inside diameter, angle and flow direction
 - Optimal inlet angle and diameter have been found for this configuration

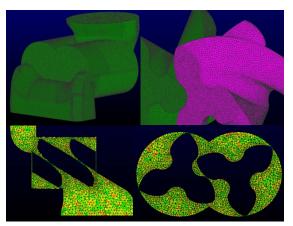

R200 with Pressurized Outlet


Accomplishments and Progress Optimizing Compressor Performance

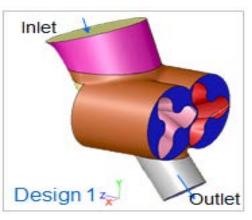
Progress to date

- Created experimental compressor R340 utilizing high efficiency Twin Vortices Series (TVS) Roots technology
- Tested R340 & V250 Gen 2 to create baseline performance maps
- Next Steps
 - Tuning of the roots compressor peak efficiency island to reduce peak power and air output temperature
 - Size and rotor configuration can be utilized to move the supercharger's peak efficiency island
 - Test new inlet/outlet port configurations to match the resultant flow vector, minimizing air flow restriction

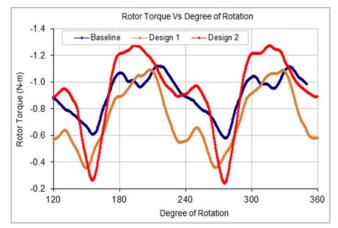
R340 Compressor Map with DOE targets



Air Demand Operating Curve for the R340 TVS Roots Type Supercharger

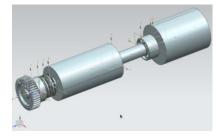


Accomplishments and Progress Inlet Outlet Expander CFD (Kettering Progress)

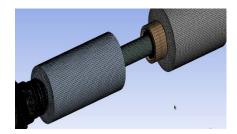

- Eaton has experience with compressor & expander CFD, however a highly refined model is required to accurately determine improvements to efficiency & performance
- Progress to date: Grid Mesh generation of the roots-expander geometry
 - Meshing was started using the STAR-CCM+ software but due to numerous distorted and skewed cells and limitation of the software to correct them this approach was shelved
 - 2nd attempt using POINTWISE was successfully completed using an overset meshing technique (creates individual mesh around each rotating object)
- Next step CFD analysis of the air flow through the roots-expander

Mesh of the supercharger-expander

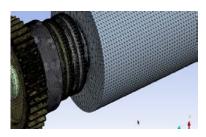
Supercharger meshed geometry



Example of Previous CFD Results



Accomplishments and Progress Overhung Motor Rotor Critical Speed Analysis (Kettering)


- An R340 roots compressor with integrated motor and overhung motor magnet has been analyzed for critical speed performance
- Progress to date:
 - Eaton generated CAD model with rotors modeled as cylinders with the same mechanical properties for simplicity
 - Grid generation of the rotor assembly has been completed and the meshed model as shown
 - Compressor and motor speed results completed to validate to modeling ability
- Next step Model compressor, expander and motor as a system

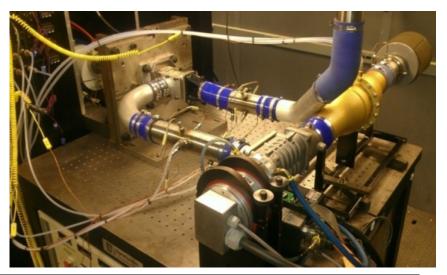
CAD Model of rotor-shaft assembly

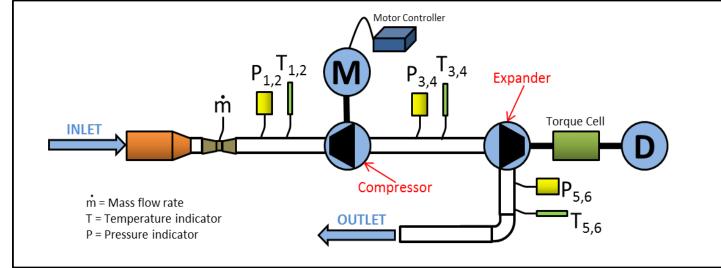
Overall view of the meshed rotor-shaft assembly in ANSYS

View of the meshed gear, left bearing, and sleeves

Part Name	Material	Young's Modulus (MPa)	Poisson's Ratio	Density (kg/m³)
Gear	DIN EN 10083	205,000	0.30	7,861
Front Bearing	Steel	206,800	0.30	7,861
Rotor	SAE 6061	68,300	0.33	2,700
Shaft	A 1547	200,000	0.29	7,870
Rear Bearing	Steel	206,800	0.30	7,861
Sleeves	Steel	206,800	0.30	7,861
Magnet	Steel	206,800	0.30	19,650*

Density of the magnet is considered to be 2.5 times of steel due to magnetic flux.




Material Properties of Rotor-shaft assembly

Accomplishments and Progress Expander Test Stand (Eaton)

The test stand is operational

- Fuel Cell work required updates to Eaton's Supercharger Test Lab
- Relative humidity and inlet air temp controls were added to the test stand capability

Accomplishments and Progress Expander Plastic Rotor Analysis (Eaton)

- Low Fuel Cell outlet temperatures allow for the use of low cost plastic housings and rotors
- FEA indicated that the 4 lobe design has lower stresses than the 3 lobe design
 - 4 Lobe design still did not meet speed & stress requirements at operating temperature
- High stress due to speed & heat warranted aluminum support structure
 - Iterated to optimize design (see table)

Powering Rusiness Worldwide

Conclusion: Design iteration number four achieved 20,000 rpm although, the stresses exceeded the capability of the glass reinforced composite. At 70°C this design is considered acceptable.

Peak Stress = 262.2 MPa	Design Iteration	Comments		Speed Achieved (rpm)	Max Principal Stress of Composite (MPa)
4 Lobe Design	1	A.S.	Unable to run due to lack of mechanical features – composite separated from aluminum extrusion	N/A	179
Peak Stress = 421.2 MPa	2	23	addition of mechanical locking feature along length of lobe	8000	258
	3	23	Dovetail interlock along diameter and at the tip of the root	12500	644
	4		Reduced height of aluminum extrusion into the lobe; simplified geometry of dovetail	20,000	614
		c	Summary of EEA results	at 150°C	

Summary of FEA results at 150°C

Collaborations

Ballard

Relationship: Industry Sub-contractor within DOE Hydrogen and Fuel Cells Program

Responsibility: Provide Fuel Cell OEM input into the design and specification of the air management system. Integrate, test and validate the Eaton compressor/expander with a 75kW Ballard HD6 stack.

Kettering

Relationship: University Sub-contractor within DOE Hydrogen and Fuel Cells Program

Responsibility: Provide critical analytical support includes expander CFD analysis, Critical Speed Analysis of compressor/expander design, and Critical Speed Analysis iterations of Eaton's compressor only

Electricore, Inc.

Relationship: Industry Sub-contractor within DOE Hydrogen and Fuel Cells Program

Responsibility: Administrative Program Management

Relationship: Federal Laboratory Sub-contractor outside DOE Hydrogen and Fuel Cells Program

Responsibility: Provide critical simulation and modeling support of the fuel cell system to assist in optimizing the roots air system with the Ballard HD6 module

Strategic Analysis

Argonne National Lab

Relationship: Industry Sub-contractor outside DOE Hydrogen and Fuel Cells Program

Responsibility: Develop fuel cell system cost utilizing manufacturing cost of roots based air management system.

Proposed Future Work

Period 1 – Items to complete by June 2013

- ANL model Determine optimal compressor expander configuration
- Kettering CFD model Optimize roots expander and compressor
- Design roots expander and compressor to meet performance and cost targets
- Design cost effective plastics expander
- Design and model integrated roots expander/compressor/motor
- Project review with DOE, report progress against GO/NO-GO Criteria

Period 2 – July 2013 to July 2014

- Prototype Compressor/Expander with Integrated Motor
 - Design, Detail, Fabricate & Qualify Prototype Components
 - Determine Production Cost Estimates
- Test Compressor/Expander with Integrated Motor at Eaton
- Project review with DOE, report progress against GO/NO-GO Criteria

Period 3 – July 2014 to July 2015

- Conduct Performance and Validation Testing at Ballard with integrated compressor expander on 80kW FC Module
- Project review with DOE, report progress against GO/NO-GO Criteria

Summary

Project Progress & Milestone Status

- Project is currently on schedule, all major and required documents have been created and submitted
- All project milestones have been met to date
- Project is on track to meet yearly Go, No Go criteria, project performance targets and deliverables

Technical Progress

- Expander CFD Analysis Previously, some optimization was completed using FLEUNT software however, Kettering University has begun CFD analysis using STAR-CCM software to provide greater modeling accuracy.
- Expander Test Mule Design Current performance data for both compressor and expander has been provided to ANL for input into the Fuel Cell System Model. Concurrently, Eaton analysis indicates a reduction in expander displacement, from the current V250 design, is necessary. Testing has begun to characterize the effect of reduced rotor size on expander performance.
- Plastic Expander Rotor FEA predicts a substantial improvement in strength when utilizing a 4 lobe rotor over a 3 lobe rotor. Further analysis and design iterations are necessary to meet performance targets with a plastic rotor.

Summary Table Progress Towards Project Targets

Characteristic	Units	20 Sta	11 tus		12+ ress	2015 Target	2017 Target
Input power @ full flow , (with expander/without expander)	full flow , (with expander/without expander) kW _e 11 17.3 11.6		11.6	15.9	8/14	8/14	
Combined motor & motor controller efficiency @ full flow	%	80		92		90	90
Compressor / expander efficiency @ full flow (C/E only)	%	71	73	74	64	75 / 75	75/80
Input power @ 25% flow (with expander/without expander)	kW _e	2.3	3.3	1.3	1.6	1.0/2.0	1.0/2.0
Combined motor & motor controller efficiency @ 25% flow	%	5	57 70		0	80	80
Compressor / expander efficiency @ 25% flow	%	62	64	65	64	65/70	65/70
Input power @ idle (with / without expander)	W _e	600	765	TBD		200/200	200/200
Combined motor / motor controller efficiency @ idle	%	35		TBD		?	70
Compressor / expander efficiency @ idle	%	61 59 TBD		60/60	60/60		
Turndown ratio (max/min flow rate)		20		20		20	20
Noise @ full flow (excluding air flow noise at air inlet and exhaust)	dB	-		65 ¹		65	65
Transient time for 10 - 90% of maximum airflow	sec	1		1 ¹		1	1
System volume	liters	15		15 ¹		15	15
System weight	kg	22		16 ¹		15	15
System cost	\$	960 TBD		500	500		

Data taken at required temperature and humidity

1 - Test run prior to start of program, will be confirmed before end of program

Meets the goal

Better than 2011 baseline but does not yet meet goal

