2013 Annual Merit Review DOE Hydrogen and Fuel Cells and Vehicle Technologies Programs High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications

> Andrew Steinbach 3M Company May 15th, 2013

Project ID: FC104

DOE Hydrogen Program

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project start: 9/1/12
- Project duration: 3 years
- Percent Complete: 20%

Budget

- Total project funding \$4.307MM
 - \$3.445 MM DOE
 - \$0.862 MM Contractor
- Funding Received FY12: \$2.859MM
- Funding for FY13: \$1.04MM (Est. non-FFRDC expend.; DOE share)

Partners

- Lawrence Berkeley Nat'l Lab.(A. Weber)
- Michigan Technological Univ. (J. Allen)
- Johns Hopkins Univ. (J. Erlebacher)
- Oak Ridge Nat'l Lab. (D. Cullen)
- Argonne Nat'l Lab. (R. Ahluwalia)

Barriers

- A. MEA Durability
- B. Stack Material & Mfg Cost
- C. MEA Performance

DOE Technical Targets Electrocatalyst (2017)

- Mass Activity: 0.44A/mg
- Inv. Spec. Power: 0.125g/kW(rated)
- PGM Total Loading: 0.125mg/cm²
- Electrocatalyst, Support Durability: < 40% Activity, ECSA Loss

MEA (2017)

- Q/∆T: 1.45kW/°C
- Cost: \$9/kW
- Durability w/cycling: 5000 hrs
- Performance @ 0.8V: 0.300A/cm²

2

• Rated Power: 1W/cm²

3N High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

Relevance and Approach

Relevance (Objective): Development of a durable, low-cost, robust, and high performance membrane electrode assembly (MEA) for transportation applications, able to meet or exceed the 2017 DOE targets.

Approach:

Optimize integration of advanced anode and cathode catalysts, based on 3M's <u>nanos</u>tructured <u>thin film</u> (NSTF) catalyst technology platform, with next generation PFSA PEMs, gas diffusion media, and flow fields for best overall MEA performance, durability, robustness, and cost. <u>Integration</u>: Includes optimization of existing

Primary Focus Topics:

and flow fields for best overall MEA performance, Integration: Includes optimization of existing components and processes via reasonable and known means – NO COMPONENT DEVELOPMENT.

- NSTF Cathode Post-Processing Optimization (Dealloying, Annealing)
- NSTF Anode Catalyst Composition , PGM Content Sensitivity
- PEM-Electrode Integration Studies
- Anode GDL Characterization, Modeling for Cold-Startup Optimization
- Integration of 2012, 2013(March) Best of Class NSTF MEAs
- Project Initiation at 3M and Partners
- MEA Integration Diagnostics (Segmented Cell; HOR Kinetic Studies; Water Balance)

Relevance and Approach – Project Tasks

- Tasks Address Barriers of Durability, Cost, and Performance
- <u>Strong Emphasis on Cold-Startup</u>, Load Transient (2,3), and Performance Durability (5).

Task	Task Description	Status/	Α.	В.	С.
	lask Description	Timing	Durability	Cost	Perform.
1	Component integration towards MEA ¼ power,	In Progress/			
L	rated power, and $Q/\Delta T$ targets.	On Target			
2	GDL and interfacial layer integration towards	Starting/			
	cold start up and transient response targets.	Delayed			
3	Water management modeling for cold start	In Progress/			
		On Target			
4	Overall Best of Class MEA Integration;	In Progress/			
	component interaction mechanism studies.	On Target			
5	Component/MEA durability evaluation;	Started/			
	Rated-power performance loss mitigation.				
6	Short stack eval. of integrated MEAs for rated	Not Started/			
	power, cold/freeze-start, transient response.	Delayed			
7	Drojact management	In Progress/			
	Project management	On Target			
8	Polative cost and manufacturing accessment	Not Started/			
	Relative cost and manufacturing assessment	On Target			

3M

High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

Milestone, Go/No-Go Goals and Status

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13

	i _	Kick off						Go NG				End			
Milestone ID	Project Quarter					Pr	oject	Miles	one					M /	lar. '13 Statu <u>% Complet</u>
			BU	U DGI	ET P	ERI	OD 1	(Sept	'12 -	June	'14)				
6.1	2	Baseline MEA: Short Stack Evaluation Complete.											25%		
1.1	7	Componer	Component Candidates Meet Interim Performance/Cost Goals Component Candidates Meet Interim Cold-Startup Goals								33%				
2.1	7	Componer									5%				
5.1	7	Componer	nt Ca	ndida	ates N	Meet	Interi	im Du	rabil	ity Go	oals				20%
3.1	7	GDL Mod	GDL Model Validation With 2 or More 3M Anode GDLs									20%			
6.2	7	Interim Be	est of	Clas	s ME	EA: S	Short	Stack	Eval	uatior	n Comj	plete.			0%
4.1 Go/No-	7	Interim Best of Class MEA Meets Go/No-Go Goals: 1) $\leq 0.135 \text{mg}_{PCM}/\text{cm}^2$ (Total)							0.1	<u>99%</u> 137mg _{a a s} /ci					
Go		2) Rated	Pow	er. O	/ Δ Τ:	0.65	, 9V@	1.41A	$/\mathrm{cm}^2$.	90°C	. 1.5at	tm H	/Air		0.658V
			BU	DGE	ET P	ERIC	DD 2	(June	'14 –	Aug.	'15)		-		
1.2	1.2 11 Component Candidates Meet Project Performance/Cost Goals									0%					
2.2	11	Componer	nt Ca	ndida	ates N	Meet	Proje	ect Co	d-Sta	irtup	Goals				0%
5.2	11	Component Candidates Meet Project Durability Goals							0%						
4.2	11	Best of Cl	lass I	MEA	Mee	ets Al	ll Proj	ject G	oals						0%
3.2	12	MEA Coo	ol Sta	rt M	odel	Vali	datio	n with	2 or 1	more 3	3M MI	EAs.			0%
6.3	12 Best of Class MEA: Short Stack Evaluation Complete.									0%					
8.1	12	12 Relative Cost Savings Report – Final Best of Class MEA Relative to 2012 MEA.								0%					
0	10	Final Dost	t of (ME	A Sh	ort St	ook D	alivo	rad ta	Fyalı	iatio	n Site		0%

5

Improved Activity, Rated-Power Capable ORR Catalysts (Task 1.1): Post-Process Optimization (<u>Surface Energetic Treatment</u> (SET))

- Mass Activity of previous generation Pt₃Ni₇/NSTF increased significantly after SET.
 - SET: NSTF-compatible continuous annealing process.
 - PREVIOUS WORK DE-FG36-07GO17007.
- Current generation Pt₃Ni₇/NSTF activity, as-deposited, higher than previous, but benefit of SET not yet demonstrated.

6

Focus of current work is determination of factors to achieve entitlement activity.

Improved Activity, Rated-Power Capable ORR Catalysts (Task 1.1): SET Induces Significant Structural Changes of Pt₃Ni₇/NSTF Cathodes

- To date, mass activity relatively unaffected by SET process parameters evaluated.
- Monotonic changes
 observed in specific
 area, crystallite size,
 and lattice constant.

MEA evaluation of larger grained materials in progress.

7

Improved Activity, Rated-Power Capable ORR Catalysts (Task 1.1): TEM Confirms Grain Growth After SET

- Preliminary 3M TEM imaging confirms significant grain growth after SET.
- Analysis at ORNL in progress to quantify surface faceting and surface composition.
- **3M** High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

8

Improved Activity, Rated-Power Capable ORR Catalysts (Task 1.1): Post-Process Optimization (<u>Dealloying</u>) @ Johns Hopkins (J. Erlebacher)

Objective: Dealloying Optimization-Improve Peak Power, Maintain Activity, w/ <u>Scalable</u> Process.

3N High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

Improved Activity, Rated-Power Capable ORR Catalysts (Task 1.1): Microscopy Reveals Structural Evolution of Pt₃Ni₇/NSTF (ORNL, D. Cullen)

OAK RIDGE NATIONAL LABORATORY

Managed by UT-Battelle for the Department of Energy

3M

- Dramatic porosity increase, Ni loss after MEA conditioning.
 - Current practice dealloying induces less porosity, Ni loss than MEA conditioning.

Dealloying Development Needed to Achieve MEA-Conditioned State, <u>Ex-Situ</u>

Durable, Ultra-Low PGM NSTF Anode Catalyst (Task 1.2):

PGM Content and Composition Sensitivity Study Completed

- Pt, PtCoMn, and Pt_3Ni_7 at $0.02mg_{PGM}/cm^2$ comparable to baseline $0.05mg_{PGM}/cm^2$ PtCoMn.
- Project Goal of ≤ 0.02mg_{PGM}/cm² Achieved.
- At further reduced PGM, performance has significant loading, composition dependence.
 - 0.01mg_{PGM}/cm²: Pt₃Ni₇, PtCoMn >> Pt
 - $0.005 \text{mg}_{\text{PGM}}/\text{cm}^2$: $\text{Pt}_3 \text{Ni}_7$ >> PtCoMn

3M High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18 ¹¹

Durable, Ultra-Low PGM NSTF Anode Catalyst (Task 1.2): Support Optimization Needed for Ultra-Low PGM NSTF Anodes

Typically-used NSTF support not optimized for ultra-low PGM anodes.

Modified NSTF generated.

Performance Improvement with Modified Support – Further Gain Possible?

3M High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18 ¹²

Durable, Improved Conductivity PEMs (Task 1.3):

Multi-Factor Systematic PEM Variable Study Completed

- Factors: PEM EW(3), additive(2), 3M support(2), thickness(3); cathode composition(2).
- Two Primary Observations
 - 1. PtCoMn: Performance Loss w/ Support and/or EW > 825 (Largely Non-Ohmic).
 - **2. Pt₃Ni₇**: Most Trends Similar to PtCoMn, but <u>More Accentuated</u>.

3M High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18 ¹³

Durable, Improved Conductivity PEMs (Task 1.3): PEM "Effective" EW Correlation Identified; Dealloying Target Composition Identified

Durable, Improved Conductivity PEMs (Task 1.3): Perf. Variation

with PtCoMn/NSTF May Be Influenced by Active Area Utilization

JIVI High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

15

Water Management Modeling for Cold Start (Task 3):

Understanding Influence of Anode Backing on NSTF MEA Cold-Startup

Water Management Modeling for Cold Start (Task 3): Material Property Measurements Initiated at MTU(J. Allen), LBNL (A. Weber)

PTL Percolation Measurements GDL C Backing GDL Capillary Pressure/Saturation Measurements - GDL C Backing

17

- Material property measurements in progress; results to be incorporated into existing MTU, LBNL models.
- Methods include: Liquid percolation, capillary pressure/saturation, contact angle, adhesion force, breakthrough pressure, tomography, thermal conductivity,...

3N High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

Water Management Modeling for Cold Start (Task 3): GDL, MEA Modeling Initiated at MTU(J. Allen), LBNL (A. Weber)

Parametric modeling study initiated on effect of backing solid phase distribution on thermal, water transport.

3M

High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

Best of Class Component Integration (Task 4.1): Go/No-Go Targets Approached - 2013 3M NSTF Best of Class MEA in Improved Flow Field

Path to Target: 1) Reduce HFR (Dealloying, Thinner Supp. PEM). 2) Increase Activity (SET)

3N High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

Collaborations

Johns Hopkins University (Jonah Erlebacher) – Subcontractor

•Task 1 - $Pt_3Ni_7/NSTF$ dealloying optimization for improved peak power.

Lawrence Berkeley National Laboratory (Adam Weber) – Subcontractor

- •Task 3 Cold startup MEA modeling.
- •Task 3 GDL characterization.

Michigan Technological University (Jeffrey Allen) – Subcontractor

- •Task 3 Integration of 3M anode GDLs into GDL network model.
- •Task 3- GDL characterization.

Oak Ridge National Laboratory (David Cullen) – Subcontractor

•Task 1 - Characterization of dealloy/SET post-processed $Pt_3Ni_7/NSTF$ cathodes.

Argonne National Laboratory (Rajesh Ahluwalia) – Collaborator

- •Task 1 NSTF HOR/HER kinetics characterization study.
- •3M data provided in support of Fuel Cells Systems Analysis project

Key Future Work – FY13, FY14

Task 1 – Integration Activities Toward ¼ Power, Performance @ rated power...

Dealloying, SET Optimization for Improved Peak Power, Activity w/ Pt₃Ni₇/NSTF.
PEM Integration Towards Confirmation, Resolution of Area Under-utilization.
Further Support Optimization for Ultra-Low PGM Anodes; Durable Anode Incorporation.
Systematic Study of Flow Field Land, Channel Widths on Rated Power Response.

Task 2 - Integration Transient Response, Cold Start Up ...

•Initiation of Anode GDL and Cathode Interlayer Optimization.

Task 3 - Water Management Modeling for Cold Start

•Finalize Material Property Measurements, Initiate Modeling with 3M-Specific Materials.

Task 4 - Best of Class MEA Integration Activities

 Best of Class Component Integration Towards Interim BOC MEA, Go/No-Go Criteria: (≤ 0.135mg_{PGM}/cm²; Rated Power, Q/∆T: 0.659V @ 1.41A/cm²).
 Improvement in Dealloyed, SET Cathode Critical

Task 5 - Durability Evaluation and Performance Degradation Mitigation

•Influence of Post-Processing on Pt₃Ni₇/NSTF Electrocatalyst Durability.

•Irreversible Peak Power Loss Mitigation Study Initiation (Material, Operational Factors).

Task 6 - Short Stack Performance, Power Transient, and Cold Start Evaluation

- Finalize Identification of Short Stack Testing Provider.
- Complete Short Stack Testing of Interim Best of Class MEA.

3M High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18 ²¹

Summary

Performance, Cost, Durability Targets, Go/No-Go Criteria, March 2013 Status											
	Performance @ 1/4 Power, Rated power, and	Ι Q/ΔT]	Fargets								
Goal ID	Project Goals (units)	2013 Status (Rep. MEA)	Go/No- Go or								
		DOE	NEW	Interim							
1	Performance @ 0.80V (A/cm ²); single cell, ≥80°C cell temperature (50, 100, 150kPag Reactant Pressures)	0.300	0.292 ^A	≥0.300							
2	Performance at Rated Power, $Q/\Delta T$: Cell voltage at 1.41 A/cm ² (Volts): single cell. >88°C cell temperature. 50kPag [*]	0.709	0.658 ^A	0.659							
Cost Targets											
3	3 Anode, Cathode Electrode PGM Content (mg/cm ²) ≤ 0.125 0.137 ^A 0.13										
4	PEM Ionomer Content (effective ion. thickness, microns)	≤16	24 ^A	20							
	Cold/Freeze Startup, Power Transient T	argets									
5	Transient response (time from 10% to 90% of rated power); single cell at 50°C, 100% RH (seconds)	≤ 1	TBD	5							
6	Cold start up evaluated as single cell steady state J @ 30° C [to simulate cold start to 50% of rated power @ $+20^{\circ}$ C] (A/cm ²)	≥ 0.8	0.38 ^B	0.6							
7	Cold start up time @ -20°C; short stack (seconds)	≤ 30	27 ^C	30							
8	Unassisted start from -40°C (pass/fail); short stack	Pass @ -40°C	Pass @ $-20^{\circ}C^{\circ}$	Pass @ -30°C							
Durability Targets											
9	Cycling time under 80°C MEA/Stack Durability Protocol with \leq 30mV Irreversible Performance Loss (hours)	≥ 5000	600 ^{D,**}	2500							
10	Table D-1 Electrocatalyst Cycle and Metrics (Mass activity	≤-40	-67	≤-40							
	% loss; mV loss @ 0.8A/cm ² ; % initial area loss)	≤-30	-24	≤- 30							
		≤-40	-26 ^E	≤-40							
11	Table D-2 Catalyst Support Cycle and Metrics (Mass	≤-40	-10	≤-40							
	activity % loss; mV loss (a) 1.5A/cm ² ; % initial area loss)	≤-30	-10	≤-30							
		≤-40	-10 5	≤-40							
12	Table D-3 MEA Chemical Stability: 500 hours (H_2	≤2	-13±4	≤2							
	crossover (mA/cm ⁻); UCV loss (% Volts); Shorting	≤-20	-12±5	≤-20							
12	Teststance (0000-000))	>1000	NA^{-}	>1000							
13	1 able D-4 Memorane Mechanical Cycle: 20K Cycles (H_2 crossover (mA/cm^2): Shorting resistance (ohm cm^2))	≤ 2	16K±0.3K	≤ <u>3</u> >500							
	crossover (mA/cm), shorting resistance (onni-cm))	>1000	INA	>300							

	A: Mean or singular values for 3M 2013(March) Best o
	Class NSTF MEAs: Anode=0.02PtCoMn/NSTF,
_	Cathode=0.117Pt ₃ Ni ₇ /NSTF(Dealloy+SET),
	$(0.137 \text{mg}_{\text{PGM}}/\text{cm}^2 \text{ total}), 3M 825 \text{EW} 24 \mu \text{ PEM}, \text{Baseline}$
	2979/2979 GDLs, "New" FF2 Flow Field, operated at
_	90°C cell temperature with subsaturated inlet humidity
	and anode/cathode stoichs of 2.0/2.5 and at
_	50,100,150kPag anode/cathode reactant outlet pressures
	respectively.
_	B: Mean values for duplicate 3M NSTF MEAs:
_	Anode=0.05PtCoMn/NSTF,
	Cathode=0.10PtCoMn/NSTF, (0.15mg _{PGM} /cm ² total),
	3M 825EW 24µ PEM, Baseline 2979/2979 GDLs,
	Baseline Quad Serpentine Flow Field.
	C: OEM Stack testing results with 3M NSTF MEAs:
	Anode=0.10PtCoMn/NSTF,
	Cathode= 0.15 PtCoMn/NSTF (0.25 mg _{PGM} /cm ² total),
	3M ionomer in supported PEM, Baseline 2979/2979
	GDLs. OEM-specific enabling technology.
	D: Mean or singular values for 3M NSTF MEAs:
	Anode=0.05PtCoMn/NSTF,
	Cathode= 0.15 PtCoMn/NSTF, (0.20 mg _{PGM} /cm ² total),
	3M supported 825EW PEM, Baseline 2979/2979
	GDLs, Baseline Quad Serpentine Flow Field. Values
	with estimated standard deviation error tested in
	duplicate.
	E: Value for Single 3M NSTF MEA. Anode:
	0.05PtCoMn/NSTF. Cathode=0.107Pt ₃ N ₁₇ / NSTF
	(Dealloy+SET), 3M 825EW 24µ PEM, Baseline 29/9/
	2979 GDLs, Baseline Quad Serpentine Flow Field.
	*: Cell performance of 0.709V (a) 1.41A/cm ² with cell
	temperature of \geq 88°C simultaneously achieves the
	$Q/\Delta I$ and rated power targets of 1.45kW/°C and
	1000mW/cm ² , respectively.
	**: Single sample result. MEA failed prematurely due
	to experimental error.

3M

Instruction

Technical Back-Up Slides

Target Polarization Curves Calculation

Performance Needed To Simultaneously Achieve DOE2017 MEA Targets At Various Cell Temperatures

- Calculated polarization curves which simultaneously meet ¼ power, Q/ΔT, and rated power targets.
- Required performance *decreases* as cell temperature *increases* to 88°C (Q/<u>AT</u>)
- Q/ Δ T target puts strict requirements on:
 - Cell T (≥88°C)
 - HFR (≤0.04ohm-cm²)

Peak power (1W/cm²) occurs at < 1.5A/cm² and >0.70V.

Performance Progression – March '12 to March '13

3M High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

Water Management Modeling for Cold Start (Task 3):

GDL – MEA Model Integration

Water Transport in MEA model (Macro Scale)

- Effective liquid permeability "k"
- Effective vapor diffusion coefficient "D"

Water Transport in GDL Model

(Pore Scale)

- Poiseuille flow liquid transport
- Concentration dispersion vapor transport

Proposed Integration Method

- MTU will generate lookup tables of "k" and "D" of discrete volumes from the GDL model, as function of:
 - Position
 - Local conditions (T, RH, P)
 - Pore morphology (size, distribution)
- LBNL will modify MEA model to utilize lookup tables.

Area Utilization Including Assumptions

3M High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18 **27**

Durability Evaluation and Perf. Degradation Mitigation (Task 5): Support, Electrocatalyst Durability of 0.107mg_{PGM}/cm² Pt₃Ni₇/NSTF

3N High Performance, Durable, Low Cost MEAs. 2013 DOE Hydrogen, Fuel Cells, Vehicles Program AMR, May 14-18

28