Highly Efficient, 5kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications

> Jim Petrecky May 15, 2013 H2RA003

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Today's Fuel Cells for proven, reliable power.

Aler.

OVERVIEW

UNIVERSITY of CALIFORNIA IRVINE

Timeline

- Project start October 2009
- Project end September 2013
- 85% complete

Barriers

- Barriers addressed:
 - A. Durability
 - B. Cost
 - C. Performance

<u>Budget</u>

- Total project funding \$6.7M
 - DOE \$3.35M / PP \$3.35M
- Funding in FY09 \$2.50M
- Funding in FY10 \$2.56M
- Funding in FY11 \$0.80M
- Funding in FY12 \$0.67M
- Status: 97% Complete

Partners

- Interactions/collaborations
 - University of California Irvine
 - Southern California Gas
 - ClearEdge Power
- Project Leads
 - Dr. Jack Brouwer
 - Randy Brown

RELEVANCE

ARRA Objectives Over Project Life

- Create new jobs as well as save existing ones; spur economic activity
- Invest in long-term economic growth
- Accelerating the commercialization and deployment of fuel cells, fuel cell manufacturing, installation, maintenance, and support services
- Use demonstrations to overcome the fuel cell development hurdles of durability, cost, system complexity, and temperature
- Substantiate the durability of Plug Power's 5 kW stationary (PEM) fuel cell system and verify its commercial readiness for the marketplace.
 - Task 1 internal fleet testing
 - Task 2 external customer demos in real-world locations in California
- Specific Project Objectives During 2013
 - Support ClearEdge as a fuel cell leader in the CHP market to demonstrate it technology in a commercial setting

APPROACH

Task 1 Inter	nal Durability / Reliability Fleet Testing	Status	
Task 1.1	System Design	100%	
Task 1.2	System Modeling	90%	
Task 1.3	Site Indentification and Sselection	100%	
Task 1.4	Procure Parts and Build Systems	100%	
Task 1.5	Long Term Tests	100%	
Go/No Go D	ecision	Go	

Plug Power met the durability testing requirements to proceed to External Test (Task 2)

Task 2 Ext	ernal Customer Demonstration and Testing	Status	
Task 2.1	Communication, Education, and Outreach	90%	
Task 2.2	Site Prep, NG and Grid Interconn.	100%	
Task 2.3	Build and Installation	100%	
Task 2.4	Demonstration Testing and Maintenance	50%	
	Desision	No Go for Plug	
Go/No Go Decision		Go for ClearEdge	
Task 2.5	Decommissioning	0%	_

Task 3 Proj	ect Management	Status
Task 3.0	Project Management	90%
Task 3.1	Cost Analysis	0%

Plug Power ceased plans for GenSys ECAT

- Stack MEA quality
 issues
- Continuity of supply
 issues

Subcontracted ClearEdge to carry out 1-year demos at two sites

ACCOMPLISHMENTS (PRE-2012)

- Fleet of 6 systems located at Plug Power
- 31,000+ run hours; 53 MW-hrs elec, 633 MW-hrs heat

Plug Power CHP System Performance Metrics (Through December 2011)								
System S/N	E8	E9	E10	F2	F3	F4	Totals	Average
Commissioned Date	Jan-10	Jan-10	Apr-10	Jan-10	Mar-10	Jun-10		
System Runtime (Hours)	7,823	4,381	1,777	8,977	5,011	3,249	31,219	5,203
Current Stack Runtime	6,058	3,802	1,777	1,651	3,098	3,249	19,635	3,273
Burner Runtime	11,443	9,910	8,344	7,958	11,191	8,264	57,109	9,518
Electrical kWh	15,247	7,349	2,520	15,109	6,679	6,002	52,905	8,818
Thermal kWh	117,862	101,859	95,252	112,070	122,348	83,607	632,998	105,500
Startup Reliability	60.0%	70.0%	71.4%	64.0%	56.3%	54.5%		62.7%
Heat Operational	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		100.0%
CHP Operational	71.9%	39.2%	55.7%	70.4%	53.8%	46.9%		56.3%

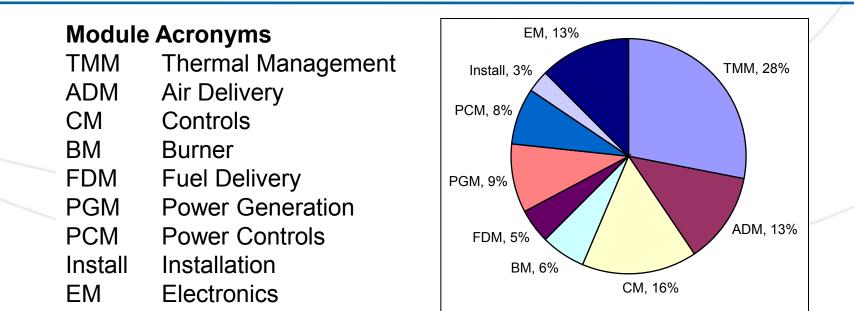
Plug Power Systems Lab

University of California - Irvine

Fleet of 3 systems located at UC-Irvine

Design Improvements

- Efficiency: 89% total peak to 94%
- Manuf: Build reduced from >120 to <50 hr
- DMC Reduction: ~\$90k to \$53k in volumes < 20

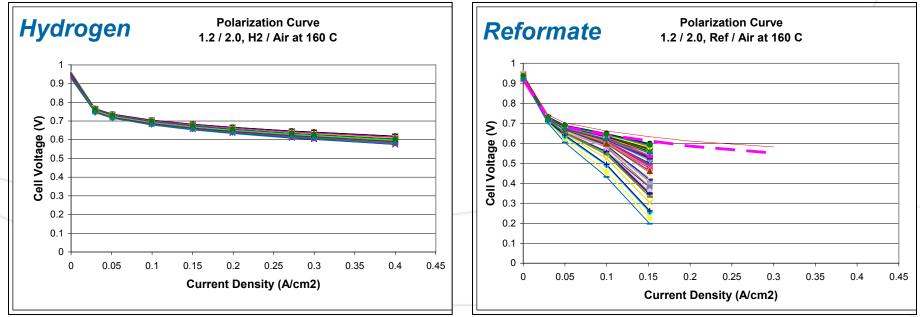


ACCOMPLISHMENTS (PRE-2012)

Defining the Top Problem Set

- PGM: Stack life less than 8000 hours
- PGM: Stack cell variability
- TMM: Pump seal, seizing, electronics
- TMM: Oil leaks stack gasket leaks
- TMM valve seizing and coupling failure

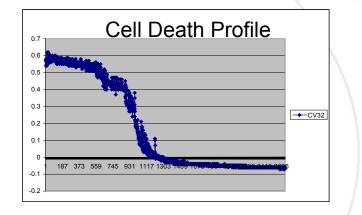
- ADM: manifold material warping
- ADM: valve seizing, controls
- BM: Igniter failure materials / temp
- CM: Sola failure due to voltage
- CM: valve position drift/loss
- FDM: Reformer temperature too high

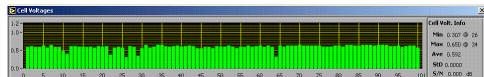


APPROACH – PRE-2012

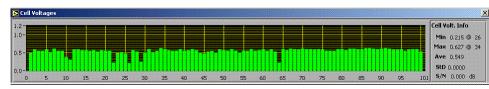
Stack Quality Issues

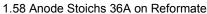
- GenSys Blue MEA production was moved to another manuf. process
- Hydrogen tests looked strong
- Reformate test- cell-to-cell variability
- Stacks would have multiple weak cells

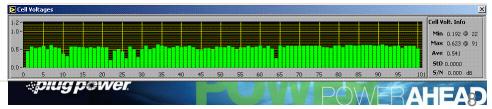



APPROACH – PRE-2012

Stack Failure Signature


- Cells looked weak then dropped off rapidly
- Cell went negative, forced shutdown
- Stack failures within 1 week of operation




1.91 Anode Stoichs 30A on Reformate

1.63 Anode Stoichs 35A on Reformate

Changes to Operating Points

- High stoic conditions did not improve weak cells
- Additional cells crashing at 1.6 anode stoic

APPROACH – 2011/2012

- Discussions held with BASF troubleshooting sessions over many months
 - Catalyst issues
 - Over Compression
 - Phos Acid Blinding of Catalyst
 - Prototype Consistency
 - Raw Materials
 - Stack Assembly
- BASF offered a standard format MEA design to substitute Plug Power's custom configuration
 - Would require prohibitive stack redesign
 - Did not want home customers to experience early stack failures
 - Decided risk was too great to move forward
- Decision: Go with ClearEdge Units

APPROACH

• Go / No Go Decisions

6A Target Performance and Go/No-Go Decision Chart					
Characteristic	Units	Goal	1st GO - 2Q10	1st GO Actual	2nd GO - 2Q11
Electrical efficiency at rated power	%	40	>30	32%	>30
CHP efficiency at rated power	%	90	>80	90%	>80
Cost (qnty < 15)	\$/kWe	10,000	20,000	10,400	20,000
Durability at < 10% rated power degradation	hr	10,000	2,000	3,000	8,700
Noise	dB(A)	<55 at 10m	<55 at 10m	55 at 1m	<55 at 10m
Emissions (combined NOx, CO, SOx, hydrocarbon, particulates)	g/MWhr	< 1.5	< 1.5	< 1.5	< 1.5
				GO	NO GO

APPROACH

 Over the past 4+ years, Plug Power has remained determined to use the program to move the fuel cell market forward in the face of changes within the company and fuel cell industry.

Plug Power Development 2009-2012: Plug Power lead on Internal Customer Acceptance Testing (Task 1)

5/10: PP "focus commercial activity on material handling market"

Subcontracting with ClearEdge 2012-2013: Plug Power subcontracts ClearEdge to demo ClearEdge CHP units in commercial opportunity

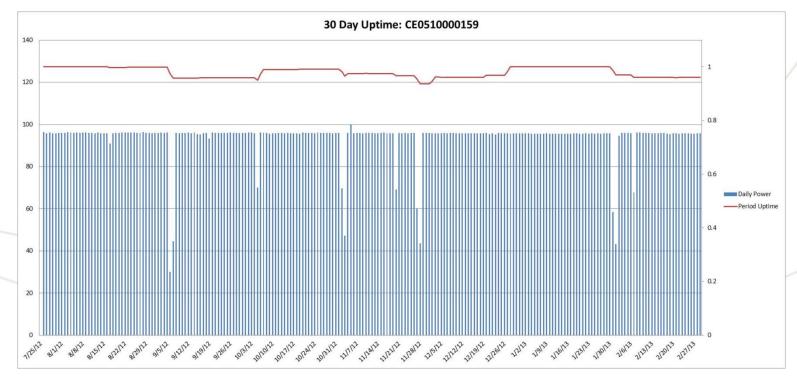
ACCOMPLISHMENTS (2012 – 2013)

• 2 ClearEdge 5 units installed, commissioned, running

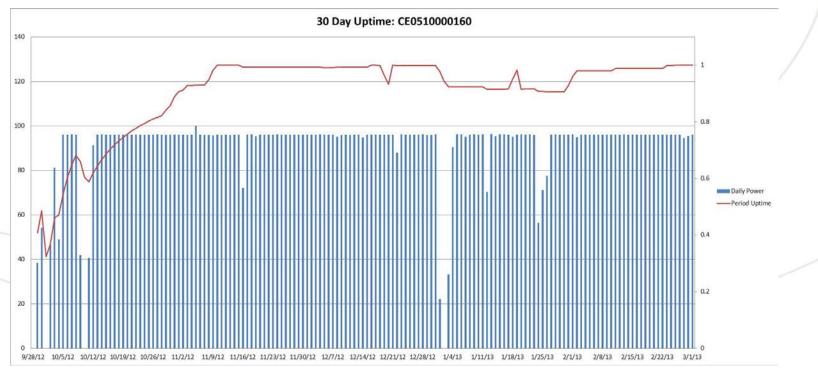
<u>UCI Irvine</u> (7/25/12) Irvine, CA

- Availability: 98.2%
- Run Time: 5,134 hrs.
- Elec: 20,532 kW-hr (36% Eff.)
- Heat: 23,269 kW-hr (78% Eff.)
- <u>Taco Bell</u> (9/28/12)

San Juan Capistrano, CA


- Availability: 95.6%
- Run Time: 3,482 hrs.
- Elec: 13,962 kW-hr (35% Eff.)
- Heat: 15,825 kW-hr (76% Eff.)

ACCOMPLISHMENTS (2012 – 2013)


- System Commissioned: 7/25/12
- % of Demo Complete: 60%
 - Availability: 98.2%
 - Run Time: 5,134 hrs.
 - Elec: 20,532 kW-hr (36% Eff.)
 - Heat: 23,269 kW-hr (78% Eff.)

ACCOMPLISHMENTS (2012 – 2013)

- System Commissioned: 9/28/12
- % of Demo Complete: 42%
 - Availability: 95.6%
 - Run Time: 3,482 hrs.
 - Elec: 13,962 kW-hr (35% Eff.)
 - Heat: 15,825 kW-hr (76% Eff.)

COLLABORATION

GenSys Blue Fuel Cell Development Task 1 Testing (Internal Customer Acceptance Testing) Program Management

California Utility Partner Cost-share Partner

UNIVERSITY of

CALIFORNIA

RVINE

Subcontracting with ClearEdge – 2012 / 2013 Demonstration of two ClearEdge CHP units in commercial opportunity

Task 1/Task 2 Testing Location / Cost-share Partner Model for Refining Controls and Improving Operation

Data Reduction and Publishing

FUTURE WORK

- Continue running the two ClearEdge demonstration units
- Decommission of UCI system in July (2 more months from May)
- Decommission of Taco Bell system in September (4 more months from May)
- Quarterly reports Q1 (in April 2013), Q2 (in July 2013)
- Cost analysis
- Final report Sept/Oct 2013

SUMMARY

Relevance:

- Jobs Created: 13.25 person-years
- Continued investment into CHP fuel cells, even outside of Plug Power

Topic 6A

Q1

Q2

Q3

Q4

Total

2009

12.0

8.0

20.0

2010

7.4

6.5

3.1

2.0

19.0

2011

2.7

1.7

1.4

0.4

6.1

2012

0.6

0.3

0.05

0.3

Approach:

- Task 1 testing successfully completed
- Stack supply led to No Go for Plug; Go for ClearEdge for Task 2

Collaborations:

 ClearEdge, University of California – Irvine, Southern California Edision, NREL

Future Work:

- Finish ClearEdge demonstrations
- Cost analysis
- Quarterly and final reporting

.3		
f P	lug	Power