2013 DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

> Mark Leavitt (PI) Patrick Lam (Presenter)

Quantum Fuel Systems Technologies Worldwide, Inc.

May 15, 2013

Project ID # MN008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 09/2008
- Project end date: 09/2013
- Percent complete: 85%

Budget

- Total project funding
 DOE share: \$3,399,826
 Contractor share: \$1,920,397
- Funding received in FY12: \$185,000
- Funding for FY13: \$332,928

Barriers

- Lack of Low-cost Carbon Fiber
- Lack of Low-cost
 Fabrication Techniques for Storage Tanks

Partners

- Quantum Technologies, Inc.
 (QT) Project lead
- The Boeing Company (Boeing)
- Pacific Northwest National Laboratory (PNNL)

Relevance

Objectives: To manufacture Type IV H₂ storage pressure vessels, utilizing a new hybrid process with the following features:

- Optimize elements of advanced fiber placement (AFP) & commercial filament winding (FW)
- Improve understanding of polymer liner H₂ degradation

With the aim of addressing the barriers by achieving a manufacturing process with:

- 1. lower composite material usage
- 2. higher manufacturing efficiency

Approach _{Quantum}

Upgraded kWind to mWind

- kWind was developed for the filament winding process
 - Models full layers of material from one end to the other end of the tank
 - Layers can only stop at specific end points in the model
 - Extensive manual rework
 of the model is required to
 include fiber placement layers
 - Provides a 2D axisymmetric solid finite element model for ANSYS computer software

MERIDIONAL DISTANCE (IN.)

Pacific Northwest

Approach Quantum

Upgraded kWind to mWind (cont.)

- mWind
 - Includes filament wound and fiber placement layers
 - Layers can start and stop at any point in the model
 - Model output includes ANSYS and Abaqus models
 - 2D Axisymmetric Solid model
 - 2D Axisymmetric Shell model
 - 3D Shell model
 - Additional read and write capabilities with other computer programs
 - Microsoft Excel
 - Export fiber strain data for contour plotting

Meridional Length

Pacific Northwest

NATIONAL LABORA

CT Scan

- Helps understand tank rupture mode (fiber bridging) and was used to improve mWind fiber buildup predictions
- Less buildup was predicated by mWind at the transition region due to termination of AFP fibers and hoop fibers

CT scan data were useful to improve the fiber buildup calculation algorithm in mWind

Quantum and Boeing

- Strain Measurements
 - Strain gages hoop strain, axial strain and 45°
 - Optical strain measurements (ARAMIS)
- Strain Measurement Comparison
 - Certain strain gages failed after initial pressure cycle
 - ARAMIS measures hoops strain of 4,000 4,500 µm/m at transition area between aft dome cap and cylinder section
 Stage 61 10.333 kpsi
 - Strain gages measure ~5,000 micro strain at the same location
 - Values are within 10 to 25% of each other with two methods
 - ARAMIS measurements help to verify the strain calculations from mWind

ARAMIS is sufficiently accurate to measure strain optically and be used for verification purposes

Accomplishments and Progress Quantum

Axial Displacement Correlation between ARAMIS and mWind

The predicted axial deflections match the measured axial displacements except where bridging occurs

BOEING

10

Accomplishments and Progress Quantum

Hoop and Axial Strain Correlation between ARAMIS and mWind

The predicted strains of mWind follows measured strains with more variation in bridging areas

BOENG

Pacific Northwest

11

Accomplishments and Progress Quantum

- High Speed Camera
 - Camera focused at the aft end because bridging was observed during CT scan

Vessel ruptured in the aft end, as expected, due to bridging

Composite Quality Improvements for AFP Dome Caps

Eliminated release film

- Stretched FEP (fluorinated ethylene propylene) film previously used for release of AFP preformed dome cap from tool
- Caused wrinkling due to slipping of AFP material
- Solution Create a tooling release surface
 - Seal foam tool (No FEP)
 - Apply release agent
- Wrinkling is eliminated
- Assembly (dome cap and tool) requires freezing prior to removal
- Produces high quality surface on the inside of the AFP dome caps

Use of sealed foam tool without FEP eliminates wrinkles on dome caps

Accomplishments and Progress Boeing (Continued)

Advanced Collapsible Tooling for AFP Dome Caps

Needed for fast, efficient forming of cylinder dome caps

- Enables quick release of AFP
 preformed dome cap
- Robust manufacturing process
- Three-piece collapsible tool
 - 1. Fiber place prepreg onto forming tool
 - 2. Remove wedge from backside, secured in position by pin.
 - 3. Remove two-piece section hinge together for easy extraction
- Increases production efficiency by reducing difficult process flow steps
- Eliminates freezing of fiber placed prepreg in order to remove dome cap from mandrel

Collapsible tooling eliminates the need to freeze part to release dome cap from mandrel

Cost Model Update with DOE Guidance on Carbon Fiber Cost

- Hybrid tanks save up to:
 - 17% Cost
 - 23% Composite Mass
- Nov. 28, 2012 DOE H₂ Storage meeting to standardize tank cost modeling assumptions
- Largest factor is carbon fiber price
- CF = \$13/lb for 500,000 tanks/year
- Hybrid tank cost model was updated from \$11/lb to \$13/lb carbon fiber
- Table compares tank cost and DOE measures for baseline and hybrid tanks 1 and 7 which exceeded target burst pressure

Summary Table		Baseline 129L	Filament Wound + Advanced Fiber Placement				
		Filament Wound	Tank 1 Layup	Tank 7 Layup			
Composite Mass, kg	FW	76	63.4	56.2			
	AFP		1.5	2.4			
Total Composite Mass, kg		76	64.9	58.6			
Composite Mass Savings		0%	15%	23%			
Composite	FW	13.2	13.2	13.2			
Placement Speed, kg/hr	AFP		0.9	0.9			
Composite	FW	5.75	4.80	4.25			
Placement Time, hr/tank	AFP		1.65	2.64			
Total Place Time, hr/tank		5.75	4.80	4.25			
# Manuf. Cells for 500K/yr	FW	191	159	142			
	AFP		165	264			
Tank Costs							
FW Composite		\$2,604	\$2,172	\$1,926			
AFP Composite			\$103	\$164			
End Boss		\$250	\$250	\$250			
Manuf. Equipment		\$36	\$41	\$45			
Factory Space		\$7	\$7	\$8			
Total Tank Cost		\$2,897	\$2,573	\$2,393			
% Tank Cost Savings		0%	11%	17%			
DOE Measures							
Specific Energy, kWh/kg ¹		1.50	1.67	1.78			
Cost Efficiency, \$/kWh ²		\$25.34	\$23.40	\$22.31			
¹ 5 kg H2 * 33.31 kWh/kgH2 / (Tank+OtherComponents+H2 mass, kg) OtherCompMass=30kg							
² (Tank+OtherComponents \$\$) / (5 kg H2 * 33.31 kWh/kgH2)							

Cost advantage of hybrid design is even higher with higher carbon fiber cost

Polymer Tank Liner Hydrogen Compatibility – In situ Testing

Upgraded In-situ tester

- Added feedback loop for constant strain rate
- Rigid frame to remove flexing during testing
- Increased extension range by 2x to ensure UTS (ultimate tensile strain) is measured (in progress)
- Better software/hardware control for much improved reproducibility
- In final stages of debugging then testing

Constant strain rate is now achievable with in situ testing

Collaborations

					Within DOE	
					H ₂ and FC	
Partner	Prime	Sub	Industry	Fed Lab	Program	Collaboration
Quantum Technologies,						Design and test hybrid pressure
Inc.	v	100	v		V	vessels manufactured with
	^	2	~		^	combination of FW and AFP
					Tt - I	
Boeing Research and				1.0		Develop AFP process for vessel
Technology		x	x			manufacturing and provide
						material testing capabilities
Pacific Northwest National						Develop cost model for hybrid
Laboratory	_					vessel manufacturing and study the
		Х		Х	Х	impact of H ₂ absorption in polymer
						liners

Proposed Future Work

FY13

- Optimize mWind algorithm to match fabrication process
 - Investigate methods to model bridging
- Design and build vessels with baseline fiber on hybrid (AFP/FW) design
- Testing to national standards on critical tests that might be affected by AFP/FW hybrid process
 - Ambient temperature burst test
 - Ambient temperature cycle test
 - Extreme temperature cycle test
 - Accelerated stress rupture
 - Impact test
- Implement the collapsible tool for releasing dome caps
- Complete analysis of high pressure hydrogen in situ tensile tester and compile report
- Final cost model analysis of new vessel designs

Project Summary

- mWind generates improved models versus kWind for hybrid vessel analyses and designs
- CT scan data used to improve fiber buildup prediction
- Avoided wrinkling in initial AFP dome cap plies by eliminating the FEP release film
- Developed a collapsible tool concept to enable quick release of preformed dome caps
- Updated cost model with standardized carbon fiber cost
- Improved an in situ tensile rig for high-pressure H₂ at PNNL

Technical Back-Up Slides

Background on Hybrid Vessel Manufacturing

1. Highly-accurate foam mandrels. Three ¹/₄- inch tows are placed on mandrel.

3. Both forward and aft dome caps are then transferred and installed to the hydrogen storage liner.

2. AFP dome caps (forward and aft) are then removed from foam tooling and brought to wind cell.

4.

The final stage is to filament wound

over the forward and aft dome caps.

Tank Cost Analysis

PNNL's Technical Progress

500,000/yr, \$11/lb Carbon Fiber

		Baseline 129L	Tank 1	Layup	Tank 7 Layup		
		Type IV Tank	Hybrid FW+#	\FP Reinforced	Hybrid FW+ AFP Reinforced		
Summary Table			Fully Integrated	Separate	Fully Integrated	Separate	
		Filam ent Wound	F₩and AFP	FW and AFP	FW and AFP	FW and AFP	
Composite Mass, kg	FW	76	63.4	63.4	56.23	56.23	
	AFP		1.5	1.5	2.4	2.4	
Total Composite Mass, kg		76	64.9	64.9	58.63	58.63	
Total Place Time, hr/tank		5.75	7.27	4.80	8.21	4.25	
# Manuf. Cells for 500K/yr	FW	191	242	159	273	142	
	AFP		484	165	546	264	
Tank Costs							
FW Composite		\$2,290	\$1,910	\$1,910	\$1,694	\$1,694	
AFP Composite			\$90	\$90	\$145	\$145	
End Boss		\$250	\$250	\$250	\$250	\$250	
Manuf. Equipment		\$36	\$66	\$41	\$72	\$45	
Factory Space		\$7	\$10	\$7	\$11	\$8	
Total Tank Cost		\$2,583	\$2,326	\$2,299	\$2,171	\$2,141	
% Tank Cost Savings		0%	10%	11%	16%	17%	
DOE Measures							
Specific Energy, kWh/kg 1		1.50	1.67	1.67	1.78	1.78	
Cost Efficiency, \$/kWh 2		\$23.45	\$21.91	\$21.75	\$20.98	\$20.80	
1 5 kg H2 * 33.31 kWh/kg							
2 (Tank+OtherComponents \$\$) / (5 kg H2 * 33.31 kWh/kgH2)							

BOEING Pacific I

Fiber Properties

Carbon fiber, Glass, Aramid; T800 – AFP, T700 – FW

