2013 DOE Hydrogen Program Merit Review Development of a Centrifugal Hydrogen Pipeline Gas Compressor

Mr. Francis A. Di Bella, P.E. and Dr. Colin Osborne Concepts NREC (<u>CN</u>) May 15, 2013

Project ID#: PD017

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project Start: June 1, 2008
- Project End: November 2012
- Percent Complete: Ph. I and Ph. II
 100%; Ph. III in Progress)

Budget

Total Project Funding

- DOE Share: \$3,352,507
- Contractor Share: \$850,055

FY12 Funding (Phase III)

\$698,827

Funding for FY13

No Cost Extension

Barriers/Tech. Objectives

- Pipeline delivery of pure (99.99%) hydrogen at <\$1/GGE with 98% hydrogen efficiency
- Reduce initial capital equipment and O&M cost
- Reduce compressor module footprint & increase reliability; reduce R&D risk – utilize commercially available, state-of-the-art components

Project Lead

Concepts NREC (Chelmsford, MA, and Wilder, VT)

Project Partners

- Air Products (Industrial User/Engineering Assistance)
- Texas A&M University (2008-2012:Materials Testing)
- HyGen Industries (Hydrogen Industry Consultant)

Technical Collaboration

- Sandia National Lab, Argonne National Lab, Savannah River National Lab
- Artec Machine Systems, RMT, Flowserve, Tranter HX, Hyundai

Hydrogen Pipeline Compressor Project Objectives – Relevance

- Demonstrate Advanced Centrifugal Compressor System for Highpressure Hydrogen Pipeline Transport to Support¹
 - Delivery of 100,000 to 1,000,000 kg/day of pure hydrogen to forecourt station at less than \$1/GGE with less than 0.5% leakage and with pipeline pressures of 1200⁺ psig
 - Reduction in initial system equipment cost to less than \$6.3 million which is the uninstalled cost for a hydrogen pipeline based on DOE's HDSAM 2.0 Economics Model
 - Reduction in Operating & Maintenance Costs via improved reliability
 - DOE's Model also indicates \$0&M cost of 3% of installed cost per year, or \$0.01/kWhr by 2017
 - ~ Improved reliability eliminates the need for system redundancies
 - Reduction in system footprint

1. Reference: Delivery Section (Sec. 3.2) of the *"Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-year Research, Development, and Demonstration Plan"*

A Three-Phase Program Approach

Phase I Initial Design (COMPLETED) (06/2008 to 12/2009)	Phase II Detailed Design (COMPLETED) (01/2010 to 12/2010)	Phase III System Validation Testing (IN PROGRESS)
 Initial design criteria and performance specifications Subsystems Modeling: aerodynamic and structural analysis of compressor Initial integrated systems analysis Initial design and cost analysis Final design specifications Materials and/or coatings investigated for use in high-pressure hydrogen environment Revised Phase II Program Plan 	 Detailed subsystems modeling Detailed integrated systems analysis Critical components design, testing, and development Detailed integrated design of full-scale and laboratory validation systems Detailed cost analysis of full- scale system 	 Component Procurement One-stage centrifugal compressor system assembly Performance evaluation test plan Lab testing and system maturation Final design of full-scale system completed Field demonstration program plan prepared

Project Engineering Approach -1 Innovative Compressor Design

Technical Approach

- Utilize <u>state-of-the-art aerodynamic/structural analyses</u> to develop a highperformance centrifugal compressor system able to provide high-pressure ratios under acceptable material stresses.
- Utilize proven bearings and seal technology to reduce developmental risk and increase system reliability at a competitive cost.
- Utilize acceptable practice for high-speed gear materials, tip speeds, and loadings.
- With project and industrial collaborators, prepare an implementation plan that can provide for near-term industrial pipeline applications.

Methodology

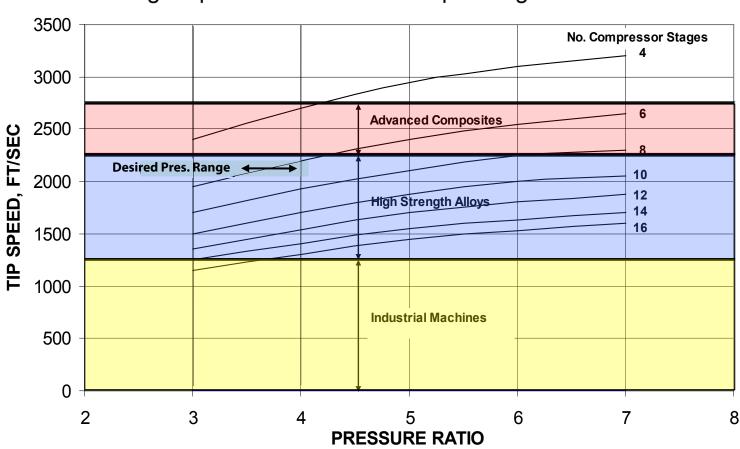
- Investigate and prioritize alternative system configurations using operating conditions that meet initial capital and operational costs to meet <u>near-term</u> <u>applications</u>.
- Identify critical engineering constraints of <u>commercially available components</u> and operational limitations of state-of-the-art materials, compatible with hydrogen to increase the range of safe compressor operating speeds.
- Design and test critical rotor aerodynamics and material components under design conditions, and demonstrate full-scale components in an integrated compressor system.

Project Engineering Approach -2 Primary Engineering Challenge

The Engineering Challenge

 Design centrifugal compressor with highest acceptable pressure ratio and thermodynamic efficiency per stage to minimize system size, complexity, and cost, and to maximize system performance and reliability.

Solution


- Maximize centrifugal compressor tip speed within stress limitations of material.
 - Pressure ratio is proportional to rpm² x radius², so small increase in tip speed results in significant increases in pressure.
 - Maximum thermodynamic efficiency is typically achieved at high operating tip speeds.
- Utilize advanced diffuser systems to maximize recovery of dynamic head into static pressure.

Constraints

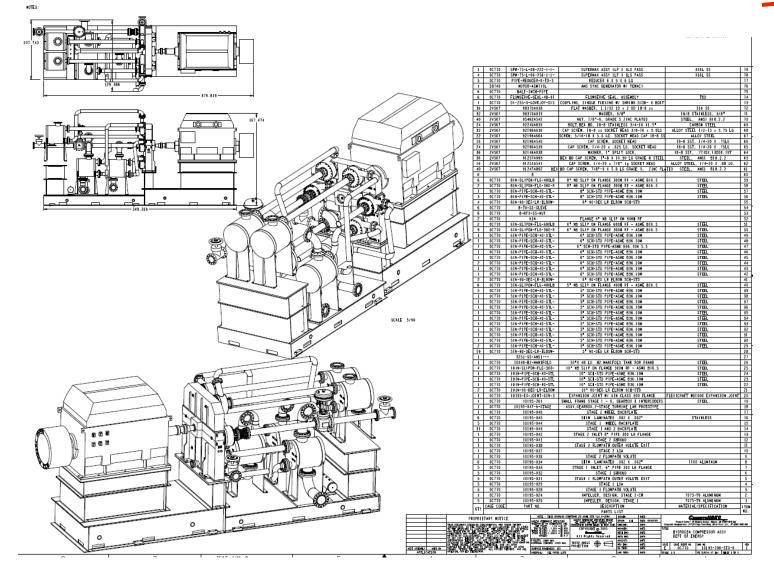
- High operating speeds increase impeller material stresses.
 - Stress is also proportional to rpm² x radius² x material density. Therefore, pressure rise is limited by maximum stress capability of impeller material.
- Need to select materials that are not significantly affected by hydrogen embrittlement.
- Limited number of materials that have high strength to material density ratio and are resistant to hydrogen embrittlement.

Project Engineering Approach-3 Operational Design Envelope

Design Options for Alternative Operating Conditions

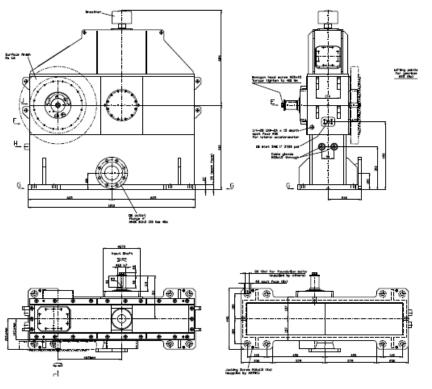
CONCEPTS NREC

Summary of DOE Target/Goals and Project Accomplishments


Progress Towards Meeting Technical Targets for Delivery of Hydrogen via Centrifugal Pipeline Compression {Note: Letters correspond to DOE's 2007 Technical Plan-Delivery Sec. 3.2-page 16}						
Hydrogen Efficiency (f)	[btu/btu]	98%	98%	Objective Met		
Hyd. Capacity (g)	Kg/day	100,000 to 1,000,000	240,000	Objective Met		
Hyd. Leakage (d)	%	< .5	0.2 (per Flowserve Shaft Seal Spec.)	Objective Met		
Hyd. Purity (h)	%	99.99	99.99 (per Flowserve Shaft Seal Spec)	Objective Met		
Discharge Pressure (g)	psig	>1000	1285	Objective Met		
Comp. Package Cost (g)	\$M	6.0 +/- 1	4.5 +/- 0.75	Objective Met		
Main. Cost (Table 3.2.2)	\$/kWhr	0.007	0.005 (per CN Analysis Model)	Objective Met		
Package Size (g)	sq. ft.	350 (per HyGen Study)	260 (per CN Design)	Objective Met		
Reliability (e)	# Sys.s Req.d	Eliminate redundent system	Modular sys.s with 240K kg/day with no redundency req.d	Objective Met		

In Summary: The original DOE proposal requirements were satisfied with the Detailed Design of a Pipeline Hydrogen Compressor that Utilizes all State-of-the-Art AND Commercially Available Components including: High Speed Centrifugal Compressor, Gearbox, Intercooler, Tilt-Pad Bearings, Oil Free Dry Gas Shaft Seal and Controls

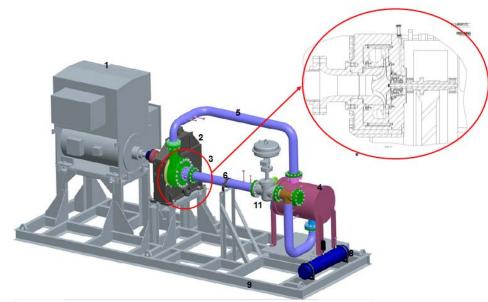
Result of Research Development: A Pipeline-capacity, Hydrogen Centrifugal Compressor can be made available NOW to meet the Hydrogen Economy needs of the future !


Hydrogen Compressor Phase II Detailed Design Accomplishment: 240,000 kg/day (6.1 Lbm/s); 350 to 1285 psig; 6300 kWe

CONCEPTS NREC

Compressor Module Design Specifications and Major Components

- Compressor design specifications for near-term gas industry and DOE infrastructure applications
 - P_{comp.} = 350 psig to 1285 psig; flow rate = 240,000 kg/day
 - Six-stage, 60,000 rpm, 3.56 pressure ratio compressor
 - 7075-T6 aluminum alloy
 - Nitronic[®]-50 pressure enclosure
 - Integral gearbox pinions driving 6 overhung impellers
- Design of compressor's major mechanical elements completed and manufacturers selected
 - Artec Machine Systems (Nova Gear, Ltd) gearbox with one-speed step gear operating at acceptable gear tip speeds and loads
 - RMT tilting-pad radial bearing designs confirmed for use
 - Flowserve gas face-seals confirmed to meet necessary specifications for hydrogen applications
- Tranter Plate-type Heat Exchanger design meets specifications to cool hydrogen gas to 105°F between stages using 85°F water



Full-scale Artec Machine Systems Gearbox for 1-stage System with Bull Gear designed to accommodate 6 Stages

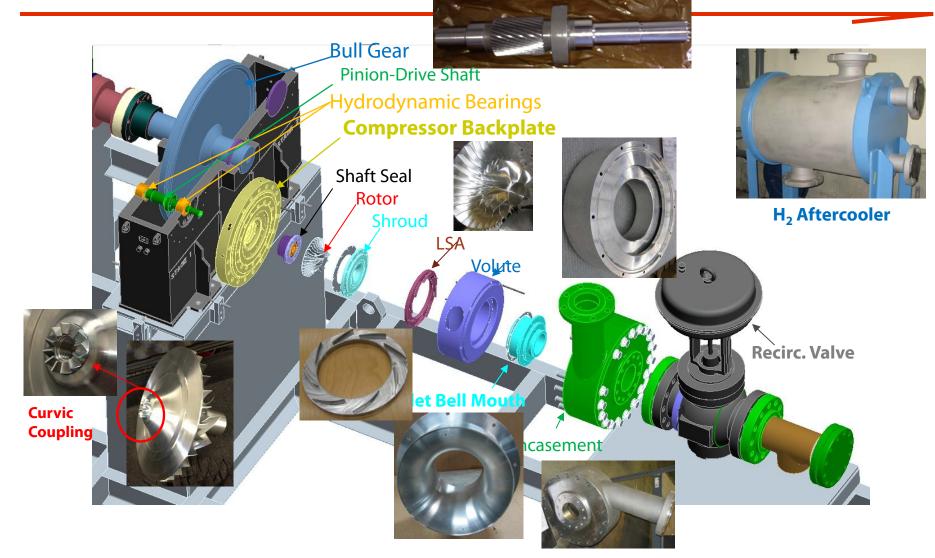
In Summary: All compressor subsystems are available "near-term".

Focus of Phase II & III: the Design and Assembly of a Laboratory Prototype for Testing

The 1-Stage Compressor Module is 16 ft long, 8 ft wide, and 9 ft tall. based on the itemized weights shown here:

- 1. 4160 Vac, 1500 hp Induction Motor (3600 rpm): 7500 bf
- 2. Artec Gearbox (3600 rpm) : 4500 Lbf
- 3. One, Compressor : 2500 Lbf 4. One, Intercooler: 2500 Lbf
- 5. 6" comp. out. piping (sch. 40, 20ft): 500 Lbf
- 450 Lbf
- 6. 6" comp. in piping (sch. 40, 30ft):
- 7. Fittings:
- 8. Purge Tank (12" d. x 6 ft long):
- 9. Base Frame and Support Pedestals: 5000 Lbf
- 10. Misc.
- 11.Shut-Off/Recirc. (PRV) valve 2,500 Lbf

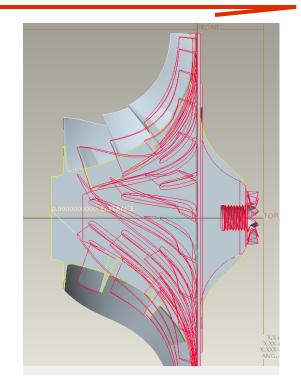
PHASE III- PROTOTYPE SYSTEM COMPONENT PROCUREMENT, **BUILD, & TEST:**


- COMPLETED P&I Diagram, **Controls Specification, Safety** Systems, One Test Site Selected (others under review)
- COMPLETED All compressor components
- IN PROGRESS Component **Procurement Included Some Redesign for cost Reduction of** Prototype
 - Modified 1 stage Gearbox
 - **Revised base frame**
 - **PLC & Controls** purchased
 - Hyundai 4160 Vac Motor & Soft Start (not shown)

700 Lbf

700 Lbf

Detail of Prototype, One Stage Hydrogen Compressor Module

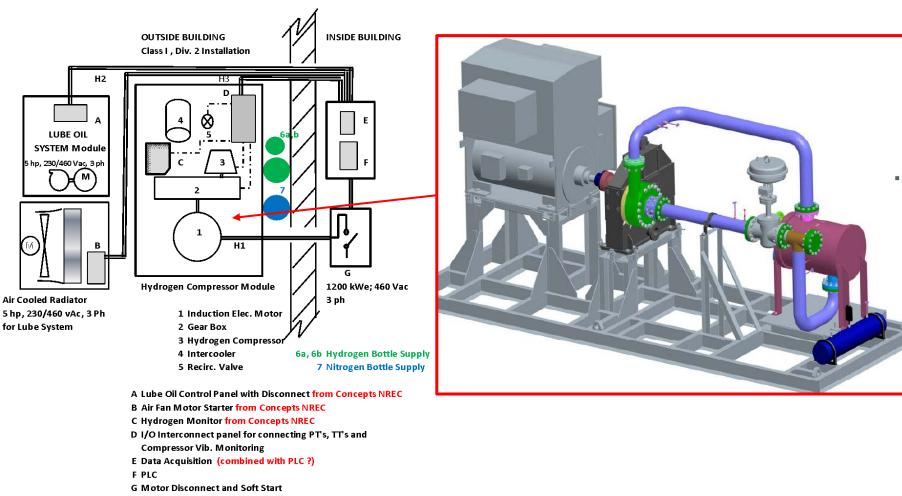

Detailed Engineering Design for All Six Compressor Rotors Completed and First Stage Manufactured

Curvic Spline Couples Rotor to Drive Shaft

First Stage of 6-Stage Compressor and Drive Shaft with Pinion and Thrust collar

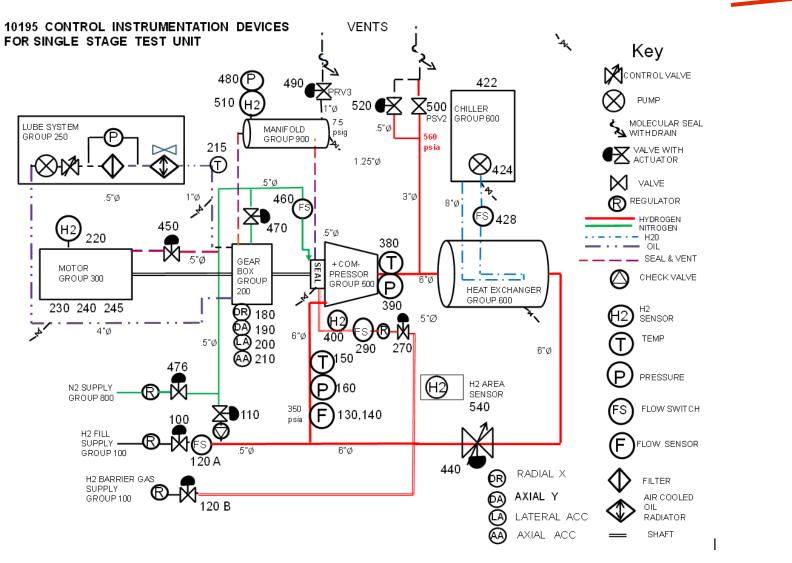
Overlay of First and Sixth Stages for Size Comparison

Accomplishment and Progress : Compressor has been successfully spun to 10% over speed for 15 minutes (66,000 rpm = 2300 ft/s tip speed)


7075-T6 Aluminum (bore-less) rotor shown after 5-axis machining. CN and TAMU testing has confirmed compatibility of alum. alloy with hydrogen

Spin test successful:

1. Fluorescence Penetrate Inspection indicated no microstress fractures or strain issues after 2.Structural analysis has also determined that there is not any concern for material creep at operating temperature (145°F) vs. 1,200°F melting temperature and stress 3. The low blade frequency and stress and the operating requirement of 24/7 duty for pipeline compressor applications eliminates any concern of material fatigue.


Prototype "Lab" Test Site Installation

H1,2,3 Electrical Conduit for controls and power wiring

Lab Prototype P&I Diagram

CONCEPTS NREC

Project Collaborations: Strengths & Responsibilities of Partners

Air Products and Chemicals, Inc.

 Provides industrial gas user technical experience and gas industry specification data on major components: electric motor, hydrogen safety system, intercooler design, selection of materials of construction

Texas A&M University

 Provided material science expertise and coordination of materials testing with Sandia and Savannah River National labs

HyGen Industries

 Provides experience in hydrogen fueling infrastructure: pipeline and refueling station systems, has a database of customer-user engineering specifications. Assists in developing implementation plan for pipeline applications for hydrogen compressors

Future Phase III Project Work in Progress

Phase III System Validation Testing

- Continue component procurement for the Lab Prototype, Single-stage hydrogen compressor system (Scheduled completion: July, 2013)
- Assembly of the one-stage centrifugal compressor and closedloop, lab prototype as a completely functioning compressor system (Scheduled Completion: Sept., 2013)
- Install lab prototype system and conduct aerodynamic testing and assessment of mechanical integrity of the compressor system (Scheduled Completion: Nov. 2013)
- Prepare post-Phase III plan for continuing testing of lab prototype compressor system

Project Summary

- Relevance: An advanced pipeline compressor system has been designed that meets DOE's performance goals for:
 - High reliability with 350 to 1200⁺ psig compression of 240,000 kg/day at 98% hydrogen efficiency
 - footprint 1/4 to 1/3 the size of existing industrial systems at projected cost of less than 80% of DOE's target
- Approach: Utilize state-of-the-art and acceptable engineering practices to reduce developmental risk and provide a near-term solution for the design of a viable hydrogen pipeline compressor:
 - Aerodynamic/structural analyses for acceptable stresses in materials (7075-T6 Rotor, Nitride 31 Chrome Moly Shaft, & Nitronic[®]-50 enclosure) compatible with hydrogen
 - Industrially proven bearings, seal technology, gearing, heat exchangers, and lube system
- Tech. Accomplishments & Progress: Aerodynamic analysis and design of a cost-effective, sixstage centrifugal compressor and a one-stage full-power lab prototype have been completed; spin test of aluminum stage verifies its mechanical integrity, all commercially available compressor subsystems purchased. <u>Research has demonstrated that a Hydrogen Pipeline Centrifugal</u> <u>Compressor is available NOW to meet the Hydrogen Economy requirements of the future!</u>
- Technology Transfer/Collaboration: The collaborative team consists of Air Products, an industrial technical experienced user of hydrogen compressors; a materials researcher, Texas A&M; a hydrogen refueling industry consultant, HyGen; and the coordinated technical support of several National Labs and major component manufacturers.
- Proposed Future Research: Continue the procurement and assembly of the major components for the laboratory testing of a closed-loop, one-stage prototype hydrogen compressor system in Phase III; Prepare Test Plan for the post-Phase III continued testing of lab prototype in a University or Industrial testing lab facility

