

Hydrogen Embrittlement of Structural Steels

Brian Somerday Sandia National Laboratories May 15, 2013

Project ID # PD025

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

Overview

Timeline

- Project start date Jan. 2007
- Project end date Oct. 2013*
- Percent complete 70%

Budget

- Total project funding (to date)
 DOE share: \$1100K
- FY13 Funding: \$105K

*Project continuation and direction determined annually by DOE

Barriers & Targets

- B. Reliability and Costs of Gaseous H₂ Compression
- K. Safety, Codes and Standards, Permitting
- D. High As-Installed Cost of Pipelines

Partners

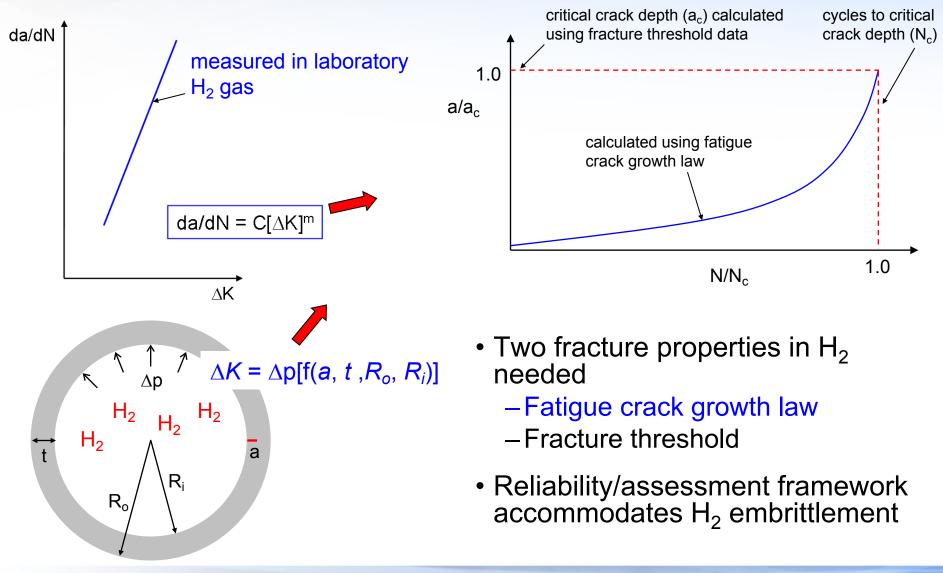
- DOE Pipeline Working Group
 - Federal Labs: Sandia, Oak Ridge, Savannah River, NIST
 - Universities: Univ. of Illinois
 - Industry: Secat, industrial gas companies, ExxonMobil
 - Standards Development
 Organizations: ASME

Objectives/Relevance

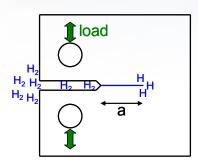
- Why should steel hydrogen pipelines be used?
 - Safety of steel pipelines is well understood (e.g., third-party damage tolerance, vulnerability of welds)
 - Hydrogen pipelines are safely operated under static pressure

Project purpose is to:

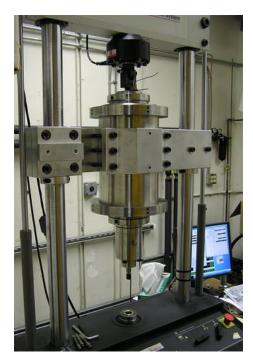
reacH₂


- Demonstrate reliability/integrity of steel hydrogen pipelines for *cyclic pressure* applications
 - Address potential fatigue crack growth aided by hydrogen embrittlement, particularly in welds
- Enable a pipeline reliability/integrity framework that accommodates hydrogen embrittlement
 - Ensure relevance to H_2 pipeline code ASME B31.12
- FY12-13 tasks
 - Test model for effects of O_2 impurities on fatigue crack growth for X52 steel in H_2 gas
 - Measure fatigue crack growth laws in H₂ gas for girth welds from X65 steel

Approach


- Apply unique capability for measuring fracture properties of steels in high-pressure H₂ gas
 - Fracture properties serve as inputs into reliability/integrity assessment as specified in ASME B31.12 pipeline code
 - Milestone: Measure the fatigue crack growth (*da/dN vs* ΔK) relationship at constant H₂ gas pressure in X65 pipeline girth weld supplied by industry partner (~50% complete)
- Pipeline steels and their welds were identified by stakeholders as a high priority
 - Provide feedback to stakeholders through DOE Pipeline Working Group

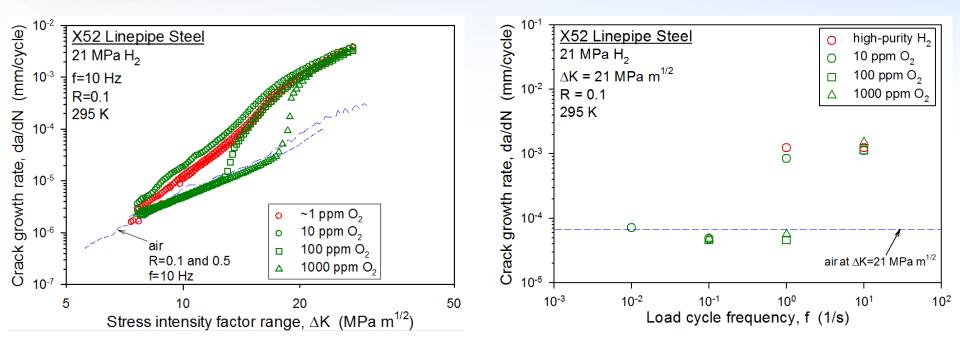
Approach: Reliability/integrity assessment framework in ASME B31.12 requires fracture data in H₂



Approach:

Fracture data in H₂ measured using unique lab capabilities: fatigue crack growth

reacH₂



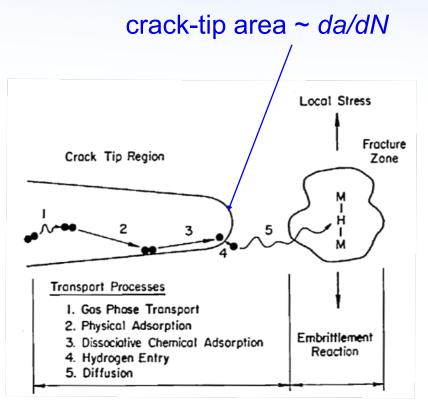
Material

-X52 and X65 pipeline steels

- Instrumentation
 - -Internal load cell in feedback loop
 - Crack-opening displacement measured internally using LVDT
 - -Crack length calculated from compliance
- Mechanical loading
 - -Triangular load-cycle waveform
 - -Constant load amplitude (increasing ΔK)
- Environment
 - -Primary supply gas: 99.9999% H₂
 - -Other supply gases: H₂ with 10-1000 ppm O₂
 - -Pressure = 3,000 psi (21 MPa)
 - -Room temperature

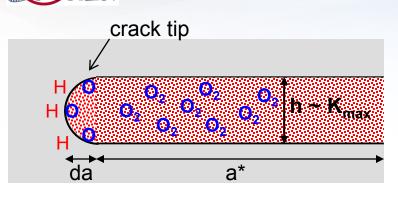
Previous Accomplishment:Measured onset of H_2 -accelerated fatigueCracking as function of ΔK , f, and O_2 content

- Increasing O₂ concentrations systematically inhibit H₂-accelerated fatigue crack growth
 - Onset of H₂-accelerated fatigue crack growth displaced to higher ΔK or f
- O₂-affected fatigue crack growth laws lead to enhanced reliability/integrity for steel H₂ pipelines


Accomplishment: SNL-I²CNER finalized model for predicting effect of O₂ on H₂-accelerated cracking

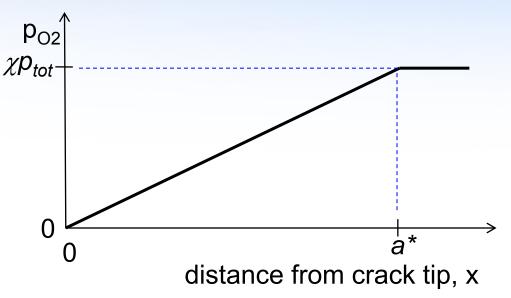
- Oxygen adsorption on crack-tip surface inhibits hydrogen uptake
- Extent of oxygen adsorption depends on crack-tip area, proportional to "mechanical" crack growth rate, *da/dN*
- Assume hydrogen uptake depends on quantity of adsorbed oxygen

$$\frac{d[H]}{dN} \propto \frac{1}{z}$$


z = layers of adsorbed oxygen

 Based on these physics, develop model that relates adsorbed oxygen (H uptake) to mechanical and environmental variables

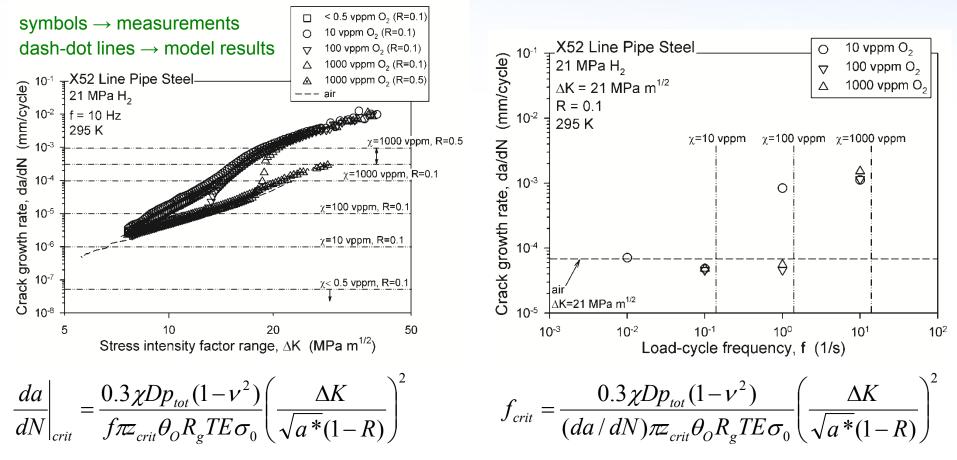
Reprinted, with permission, from <u>ASTM STP1020 Fracture Mechanics:</u> <u>Perspectives and Directions (Twentieth Symposium)</u>, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken PA, 19428


Model developed based on idealized crack tip and crack channel geometry

Model assumptions:

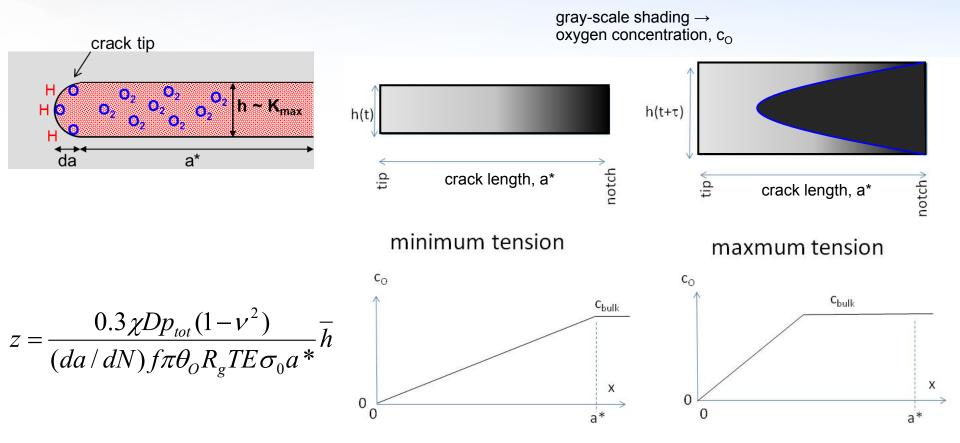
- O₂ adsorption rate-limited by diffusion in crack channel
- steady state p_{O2} profile
- •p_{O2} = 0 at crack tip
- Mass balance between O₂ diffusion flux and O₂ adsorbed on fresh cracktip surface during one cycle yields:

$$z = \frac{0.3 \chi D p_{tot} (1 - v^2)}{(da/dN) f \pi \theta_0 R_g TE \sigma_0} \left(\frac{\Delta K}{\sqrt{a^*}(1 - R)}\right)^2$$

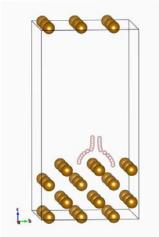


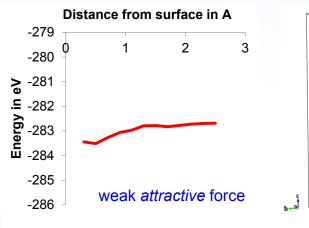
- Model predicts effects of mechanical and environmental variables on O₂ adsorption (z)
- By extension, model can predict effects of mechanical and environmental variables on H₂accelerated cracking

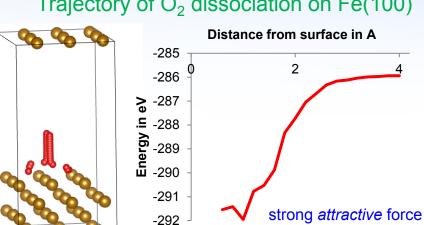
Model employed to predict critical *da/dN* and *f* levels for H₂-accelerated crack growth


• Assumption: sufficient H uptake for accelerated cracking when $z = z_{crit}$

Agreement between model and experiment validates physics and demonstrates predictive capability

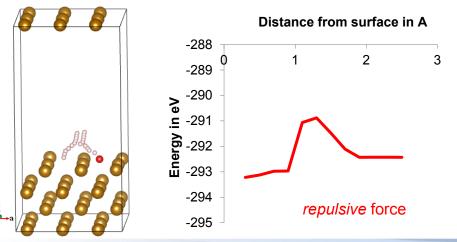

More advanced model accounts for varying O₂ profile in "breathing" crack



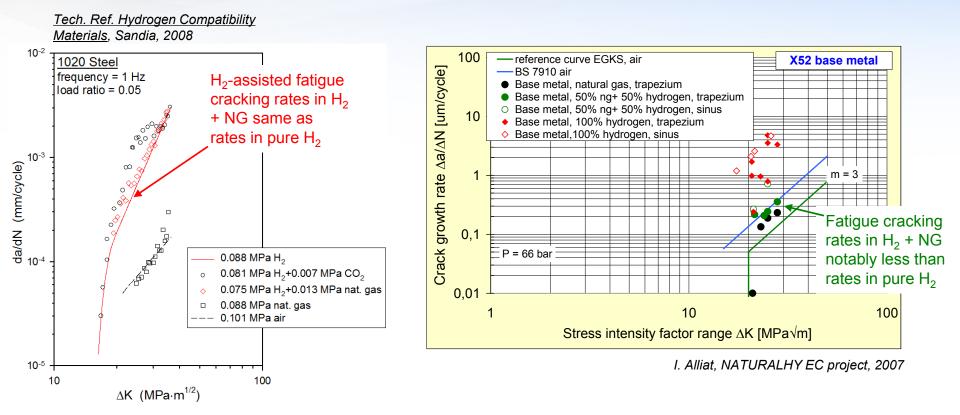

Model based on "breathing" crack retains dependence on O_2 concentration (χ) and frequency (f)

Accomplishment: reacH₂ DFT calculations provide mechanistic insight into role of O₂ in inhibiting H₂ embrittlement

Trajectory of H_2 dissociation on Fe(100)



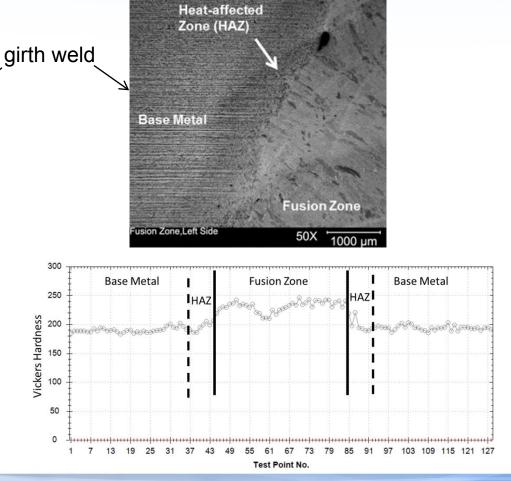
Trajectory of O_2 dissociation on Fe(100)


Attractive force: $F = -\frac{dE}{dR}$

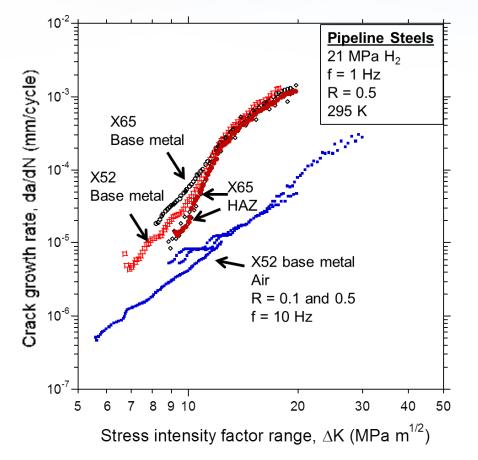
Trajectory of H_2 dissociation on oxygen-rich Fe(100)

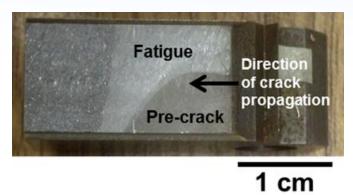
- Density functional theory (DFT) results from collaborator (I²CNER) reveal that surface-adsorbed oxygen impedes H₂ dissociation on iron (steel)
- DFT is theoretical tool for identifying other inhibitors

Model impact: interpret laboratory results or component behavior, e.g., mixed NG + H₂


- Possible impurities in natural gas such as O₂ and CO may explain varying results for crack growth rates in mixed NG + H₂
- Model could identify and quantify influence of impurities on experimental data or steel pipeline performance

Fatigue crack growth measurements must emphasize welds: potential vulnerability


 Measured fatigue crack growth rates for technologically relevant girth weld in H₂ gas


- API 5L X65 steel
 - Minimum yield strength:
 65 ksi (428 MPa)

reacH₂ Completed initial measurements on base metal, fusion zone, and heat affected zone

Results from fusion zone specimen not valid due to non-uniform pre-crack front

- Duplicate measurements for HAZ yield nearly identical results
- Initial results: crack growth rates lower for HAZ compared to base metal in lower ∠K range
- Need modified procedures to establish reliable data for fusion zone

Collaborations

- DOE Pipeline Working Group (PWG)
 - Participants funded by DOE FCT Office
 - Federal Labs: Sandia, Oak Ridge, Savannah River
 - Universities: Univ. of Illinois
 - Industry: Secat

reacH₂

- Participants not funded by DOE FCT Office
 - Federal Labs: NIST
 - Industry: industrial gas companies, ExxonMobil
 - Standards Development Organizations: ASME
- Extent of collaborations include:
 - PWG meetings (~ 1/year)
 - Supplying materials (e.g., ExxonMobil-Sandia)
 - Coordinating testing (e.g., NIST-Sandia)
- International Institute for Carbon-Neutral Energy Research (I²CNER), Fukuoka, Japan (e.g., modeling)

Proposed Future Work

Remainder of FY13

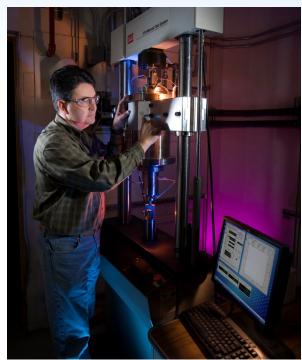
 Complete multiple fatigue crack growth measurements for girth weld in H₂ gas to demonstrate reliable data

FY14

- Measure fatigue crack growth laws in H₂ for seam weld from technologically relevant pipeline steel
- Conduct reliability/integrity analysis of H₂ pipeline using operating parameters supplied by industry partner
- Expand pipeline steel testing beyond X52 and X65, e.g., transition to higher-strength steels such as X70 and X80

Summary

- Measured fracture thresholds and fatigue crack growth laws allow evaluation of reliability/integrity of steel H₂ pipelines
 - Hydrogen embrittlement accommodated by measuring fracture properties in H₂ following ASME B31.12 design standard
- Analytical model quantifies inhibiting effect of O₂ on H₂accelerated fatigue crack growth, including variables such as load-cycle frequency and O₂ concentration
 - Model may provide insight into effects of gas impurities on H_2 -accelerated fatigue crack growth for mixed natural gas + H_2
- Conducted initial measurements of fatigue crack growth laws for pipeline steel girth weld in H₂ gas
 - Testing challenges (e.g., non-uniform crack fronts) require multiple measurements to confirm data reliability


Technical Back-Up Slides

Accomplishment (in coordination with Safety, Codes and Standards): Hosted meeting on Advancing Materials Testing in Hydrogen Gas at SNL/CA

- Goal: exchange test system design details and initiate international collaboration on next-generation testing capabilities
- Attendees: ~25 people from universities, national labs, and industry world-wide
- Output:

reacH₂

- Catalogue design concepts, best practices, and safety features
- Determine test system limits
- Identify gaps in existing testing capabilities
- Make meeting presentations publically available
- Identify pathways and resources for development of capabilities
- Identify collaboration opportunities

