

Solarthermal Redox-based Water Splitting Cycles

Christopher Muhich^a, Janna Martinek^a, Darwin Arifin^a, Kayla Weston^a, Kimberly Zimmer^a, Rachel Viger^a, Charles Musgrave^a, Judy Netter^b, Anthony McDaniel^c, and <u>Alan Weimer (P.I.)^a</u>

^aUniversity of Colorado at Boulder ^bNational Renewable Energy Laboratory ^cSandia National Laboratories

May 16, 2013

Project ID No. PD028

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

- Start: 6-1-2005
- End: 9-30-2013
- 80% completed

Budget

•Total Project Funding 2005-2011: \$1,210K DOE

\$347,500 Cost Share

•Funds received in FY12

\$217,000 (subcontract from SNL)

- \$ 54,250 Cost Share
- Planned FY2013 Funding

\$250,000 (subcontract from SNL)

Barriers

U. High-Temperature Thermochemical Technology

V. High-Temperature Robust Materials

W. Concentrated Solar Energy Capital Cost

X. Coupling Concentrated Solar Energy and Thermochemical cycles

Partners

National Renewable Energy Laboratory (NREL) Sandia National Laboratories (SNL)

 Objective - Develop and demonstrate robust materials for a two-step thermochemical redox cycle that will integrate easily into a scalable solar-thermal reactor design and will achieve the DOE cost targets for solar hydrogen:

(\$14.80/kg H₂ in 2015; \$3.70/kg H₂ in 2020; ultimately \$2/kg H₂)

Milestone – "Synthesize a cobalt ferrite/alumina "hercynite" active material by ALD using polymer templates. Demonstrate isothermal redox water-splitting in a stagnation flow reactor at a temperature of 1350°C yielding a H₂ production per gram of total mass of active material > 100 μ moles/g active material." (> 200 μ moles/g active material achieved in 3/2013)

Approach

- Ceria redox is considered base material for comparative water splitting (WS) performance fast kinetics & robust
- Evaluate "doped" CeO₂, compared to base
- Evaluate "hercynite cycle" materials, i.e. ferrite/alumina reaction
 - Temperature Swing redox (TS)
 - Isothermal redox (IS)
- Model multi-tube fixed reactor configuration for efficiency estimates & "best" design
- Evaluate effect of increased pressure (P) and temperature (T) on increasing the slower oxidation rates measured at Sandia National Labs in 2012
- Validate high productivity "hercynite cycle" data obtained onsun at NREL in 2012 (145 µmole H₂/g total)

Accomplishments & Progress

Stagnation Flow Reactor for Materials Characterization

- CeO₂
- "Hercynite"
- T-Swing redox
- Isothermal redox

T

Ceria 1500°C/1200°C (redox)

Ceria 1350°C/1000°C (redox)

Time (s)

Zr Substitution Beneficial to Reduction

Experiments run at Sandia National Laboratories

Zr Substitution Beneficial to Oxidation

"Hercynite Cycle"

- Reduced and oxidized moieties are stabilized in two different compounds;
- Compound formation is more thermodynamically favorable than solid solution formation
- Higher T and P should increase oxidation rate

"Hercynite Cycle" Robustness

Chemistry Validated via Raman:

Arifin, D. et al.," Energy & Environmental Science 5, 9438-9443 (2012)

lμm

Micrographs of Active Nanostructured "Hercynite" Materials

Liang, X.H. et al., Microporous and Mesoporous Materials, <u>149</u>, 106-110 (2012)

19.8 wt% CoFe $_2O_4$ on Al $_2O_3$

<u>Cross-sectioned Particle</u> Skeletal γ-Al₂O₃ (80 m²/g; 1 cm³/g pore volume);

Lichty, P., et al. <u>Int. J. of Hydrogen</u> <u>Energy</u>, <u>37</u>, 16888-16894 (2012)

Isothermal Redox

Reduction temperature is dictated by reduction enthalpy of the active material

However water is not reacting in the gas phase, need to consider three phases:

-Gas. Surface and Solid

$$\Delta G = P\Delta V - T\Delta S + \sum_{j=1}^{M} \mu_j \Delta N_j$$

 N_x on the surface is related to P_x :

$$N_x = a * P_x$$

By altering pressure, the free energy can become favorable

$$\mu_{MO_{x-1}}N_{MO_{x-1}} + \mu_{H_2O}N_{H_2O} = \mu_{MO_x}N_{MO_x} + \mu_{H_2}N_{H_2}$$

 Δ (μ^*N) (T_{red})< 0

9

"Hercynite Cycle" Isothermal Water Splitting

W Hercynite Isothermal Summary @1350°C

% [H ₂ O]	P _{H2O} (Torr)	H ₂ production ^a (μmol/g) ^b	Peak rate ^b (µmol/g/s)
33	253.3	40 ± 9	0.06 ± 0.02
40	325.7	72 ± 8	0.15 ± 0.07
50	380	102 ± 18	0.35 ± .18

- ^a Error was calculated at 95% confidence level.
 ^b Rates represent μmol H₂/g of total material.
 Multiply by 2.13 to get μmol H₂/g active material.
 - Increased H₂O pressure increases total H₂ produced
 - Increased H₂O pressure increases peak rates of H₂ production
 - Increased H₂O pressure decreases time for complete re-oxidation.

Temperature Swing vs. Isothermal Water Splitting

Water Splitting Comparisons

Temp Swing (TS) & Isothermal (IT) (Red/Ox); Temperature (°C)	CeO ₂ (µmole/g)	Nanostructured "Hercynite" (μmole/g); x 2.13 / g active	CeO ₂ Peak Rate (µmole/g/s)	Nanostructured "Hercynite" Peak Rate (µmole/g/s); x 2.13 / g active
1500/1200	159.1 ± 15.7	93.7 ± 19.2	1.28 (avg)	0.32 (avg)
1350/1000	16.4 ± 3.6	31.4 ± 2.3	0.15 (avg)	0.03 (avg)
1350/1350		102 ± 18		0.55 ± 0.16
1450/1450		167.4 (avg)		1.34 (avg)

P = 760 Torr; $[H_2O] = 50\%$

- At high reduction T, TS CeO₂ produces ~ equal H₂ as IT "hercynite cycle" per total g of material ("hercynite cycle" produces about 2X more on active material basis).
- At low reduction T, IT "hercynite cycle" produces ~ 5X more H₂ compared to CeO₂ and ~10X more on basis of active material
- IT "hercynite cycle" produces substantially more H₂ than TS "hercynite cycle".

Ð

Isothermal Redox Similar to PSA

Receiver Model Concept/Overview

<u>3D Monte Carlo ray-tracing</u> <u>model:</u>

• Provides profiles of absorbed solar energy on all surfaces from defined solar profile at aperture

3D transient CFD model:

- Fluid flow through packed bed
- Convective / conductive / radiative heat transfer in packed bed and cavity
- Natural convection in cavity space
- Kinetic reaction rates = f (T, local fluid composition, reaction extent)
- Equilibrium limitations via kinetic rates of reverse reactions

Solar energy flux absorbed on tube array

300

250

200

Time – dependent
 receiver
 temperature profiles

T (K)

1710

1620

1530

1440

<1350

Objectives

- Develop steady state & dynamic models of a multi-tube solar receiver
- Identify parameters controlling receiver efficiency
- Identify optimal tube/cavity configurations & solar flux input
- Quantify impacts of isothermal operation on receiver efficiency

Time-averaged receiver efficiency based on transient H₂ production

Battery Limits

"Hercynite Cycle"

- •4 kW solar input
- Adiabatic external boundaries
- •6 cm square aperture
- •6 min cycle time

•Flux - Solar beam width / direction optimized independently for each design

$$\overline{\eta} = \frac{\int_{cycle} \dot{n}_{H_2} LHV_{H_2} dt}{\int_{cycle} P_{solar} dt + \int_{cycle} E_{O_2} \dot{n}_{O_2} dt} = \frac{\text{Heating value of H}_2 \text{ produced}}{\text{Solar energy + Energy to separate O}_2 \text{ from inert}} = \frac{LHV_{H_2} \overline{n}_{H_2,i}}{P_{solar} + E_{O_2} \overline{n}_{O_2}}$$

<u>r cavity</u>	<u>h cavity</u>	<u>r tube</u>	<u>mol</u>	sccm	<u>Maximum</u>	<u>Average</u>	<u>n__{LHV} H₂</u>
<u>(cm)</u>	<u>(cm)</u>	<u>(cm)</u>	<u>Core₂O4</u> per tube	<u>H₂O per</u> <u>tube</u>	<u>T (°C)</u>	<u>T (°C)</u>	
14.6	18	2.3	2.6	1	1620	1532	5.5
20.1	22	3.3	6.3	6	1427	1257	16.7

 $\eta_{\text{ LHV}}\,\text{H}_{2}$ increases with a decreased surface/volume ratio for solar reactor

Collaborations

- High-flux Solar Furnace On-sun Operations at NREL
- Laser-assisted Stagnation Flow Reactor
 Operations at Sandia Livermore (one Ph.D. student in-place at all times)

Proposed Future Work

- Evaluate isothermal redox at T > 1450°C; P > 760 Torr; and $[H_2O] = 100\%$
- Evaluate improved compositions approaching stoichiometric CoFe₂O₄/Al₂O₃ = 3
- Develop reaction kinetics rate expressions for "hercynite cycle" active materials
- Incorporate improved reduction and oxidation reaction kinetics into the multi-tubular receiver model; update model
- Demonstrate isothermal redox on-sun
- Evaluate a high-T oxygen transport membrane for O₂ removal during redox cycling (ITM-SEOS)
- Carry out H2A Analysis for Isothermal Redox Processing

Proposed Future Work

- Synthesize Micro-containers of Nano-sized Active Materials & test in a Particle Flow Reactor
- Particle ALD can be used to produce nano-coated nanoparticles that are then spray dried/calcined to 60 microns $\underline{CoFe_2O_4/Al_2O_3} = 1/3 \pmod{2}$

 Al_2O_3 (3.95 g/cc) CoFe₂O₄ (5.15 g/cc)

<u>dp Al₂O3</u> (nm)	<u>CoFe₂O₄ Film</u> <u>Thickness (nm)</u>	
20	1.7	
40	3.3	
150	12.5	

Spray Dried

Calcined (Typical $d_{50} = 60-80 \ \mu m$)

Or, directly spray dry nano Al_2O_3 , Fe_2O_3 and CoO

Summary

- Zr-doped CeO₂ increases H₂ productivity by ~ 20% over undoped CeO₂;
- Hercynite cycle nanostructured active materials operating isothermally at 1450°C have comparable peak reaction rates and H₂ production rates/g compared to Zr-doped CeO₂ reduced at 1500°C and oxidized at 1200°C. On the basis of g active materials only, hercynite cycle materials are 2X performance demonstrated 372 µmoles H₂/g active material.
- Hercynite cycle nanostructured active materials operating isothermally at 1350°C have 5X peak reaction rates and H₂ production rates/g compared to CeO₂ reduced at 1350°C and oxidized at 1000°C. On the basis of g active materials only, hercynite cycle materials are 10X H₂ production performance.

- Active "hercynite cycle" nanostructures maintained their redox activity for over 150 cycles, after 1st cycle;
- Increased [H₂O], operating P and operating T increase total H₂ produced, increase the peak rate of H₂ production, and decrease the time for complete re-oxidation for isothermal "hercynite cycle" materials; and
- A small adiabatic 4-kW_{thermal} solarthermal multi-tube fixed bed reactor operating isothermally with "hercynite cycle" materials is predicted to have a $\eta_{LHV} H_2 > 15\%$.

Acknowledgements:

- 16 Peer-reviewed scientific papers published in 2012;
- 7 already published in 2013 (+ 3 in press)
- 4 U.S. Patents issued in 2012; 1 Issued thus far in 2013
- Three Ph.D. students won 1st, 2nd, and 3rd Place Posters and an U/G student took 1st Place at 2012 Annual AIChE Meeting (Pittsburgh)

Technical Backup Slides

University of Colorado Multi-tube Solar Receiver/Reactor

On-sun Experiments at NREL (2012)

1350°C/1000°C Redox (P=1120 Torr; 50% [H₂O])

Integrated H₂ production in µmole/g ferrite

Lichty, P., et al., International Journal of Hydrogen Energy, 37, 16888-16894 (2012)

Laser-Assisted redox at SNL (2012)

Nanostructured "hercynite cycle" active materials

Arifin, D. et al., Energy & Environmental Science 5, 9438-9443 (2012)

TEM Alumina Coated Silica (40 nm)

5.2 nm film (1.2 Å/cycle)

Film thickness is uniform throughout the entire sample

L.F. Hakim, S.M. George, and A.W. Weimer, <u>CVD</u>, <u>11</u>, 420 (2005)

HRTEM Alumina Coated Silica (40 nm)

5.2 nm film (1.2 Å/cycle)

Film thickness is uniform throughout the entire sample of primary particles; coated in a fluidized bed

L.F. Hakim, S.M. George, and A.W. Weimer, <u>CVD</u>, <u>11</u>, 420 (2005)

7 nm Primary TiO₂ Particle Nanocoated

Cross-section HRTEM Image of an AI_2O_3 (15 Å) ALD Coated 7 nm TiO₂ Nanoparticle Processed in a Fluidized Bed Reactor

L. F. Hakim et al., Advanced Functional Materials, 17, 3175 (2007)