

2013 Hydrogen Program

Annual Merit Review Meeting

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane

Monjid Hamdan

Director of Engineering

Giner, Inc.

89 Rumford Ave. Newton, Ma. 02466

May 15, 2013

Project ID# PD030

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: May 2008
- Project End: April 2013
- Percent Complete: 100

Budget

- Total Project Budget: \$2.49MM
 - DOE Share: \$1.99MM
 - Contractor Share: \$0.51MM

Funding Received in FY12: \$278K

Barriers

Hydrogen Generation by Water Electrolysis

- G. Capital Cost
- H. System Efficiency

Technical Targets: Distributed Forecourt Water Electrolysis¹

Characteristics		Units	2015	2020	Giner Status (2013)
Hydrogen Levelized Cost ²		\$/kg-H ₂	3.90	<2.30	3.64 ³ (5.11) ⁴
Electrolyzer Cap. Cost		\$/kg-H ₂	0.50	0.50	1.30 (0.74) ⁵
Efficiency	System	%LHV (kWh/kg)	72 (46)	75 (44)	65 (51)
Effic	Stack	%LHV (kWh/kg)	76 (44)	77 (43)	74 (45)

¹ 2012 MYRDD Plan. ²Production Only. ³Utilizing H2A Ver.2. ⁴Utilizing H2A Ver.3 (Electric costs increased to \$0.057/kW from 0.039\$/kW). ⁵ Stack Only

Partners

- Parker Hannifin Corporation (Industry) System Development
- Virginia Tech University (Academic) Membrane Development

Collaborations

- 3M Fuel Cell Components Program NSTF Catalyst & Membrane
- Entegris Carbon Cell-Separators
- TreadStone Technologies Metal Cell-Separators
- Tokuyama Low-Cost Membrane
- Prof. R. Zalosh (WPI) Hydrogen Safety Codes

Relevance: Project Objectives

Overall Project Objectives

- Develop and demonstrate advanced low-cost, moderate-pressure PEM water electrolyzer system to meet DOE targets for distributed electrolysis.
 - Develop high efficiency, low-cost membrane
 - □ Develop long-life cell-separator
 - □ Develop lower-cost prototype electrolyzer stack & system

Relevance

- Successful development of a low-cost hydrogen generator will enable
 - Integration of renewable energy sources
 - Early adoption of fuel cell vehicles

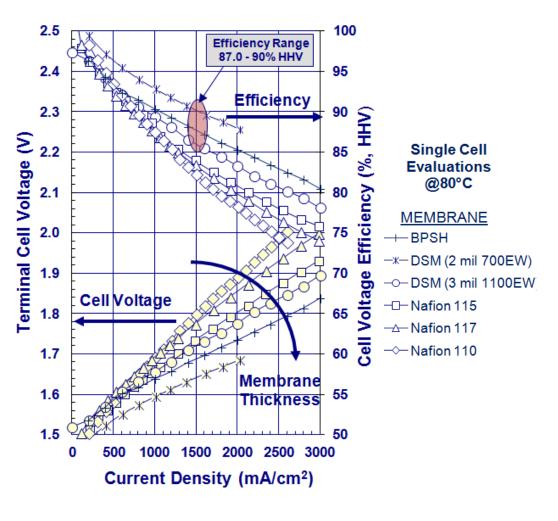
FY 2012-13 Objectives

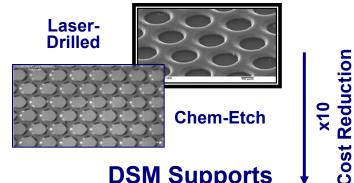
- Deliver/demonstrate prototype electrolyzer system at NREL
- □ Complete membrane evaluations under aggressive conditions
 - High pressure evaluation
 - High current density evaluation

Low-Cost PEM Electrolyzer Stack

Approach: Overview

Membrane	Cell-Separator	Electrolyzer Stack	Electrolyzer System
 Develop High-Strength, High-efficiency membranes 	 Develop cell-separators with High electrical conductivity Resistant to hydrogen embrittlement Stable in oxidizing environment Low-Cost 	 Reduce parts count/cell Develop innovative designs to reduce Mat'l costs Apply manufacturing methods to reduce costs Increase cell active 	 Reduce BOP capital cost Reduce BOP power consumption-through higher efficiency power electronics Design high efficiency H₂ dryer Improve safety and reliability
DSM DSM-PFSA ionomer incorporated in an engineering plastic support Investigate Alternative Low- Cost Membranes		area	 Design for high-volume manufacturing Team with large volume commercial manufacturer (Parker-Hannifin)
 Hydrocarbons ionomers Bi-Phenyl Sulfone (VT) PFSA (850EW) membrane (3M) 2012-2013:Evaluate membrane under aggressive conditions Evaluate methods of bonding dissimilar metal films Evaluate non-metal substrate with conductive coating 2012-2013:Investigate alternative cell-separator materials for future cost reductions 		 Fabricate 0.5kg-H₂/hr Stack utilizing low-cost components 2012-2013: Broaden product range to include 200 cells/stack 	




Approach: 2012-13 Milestones

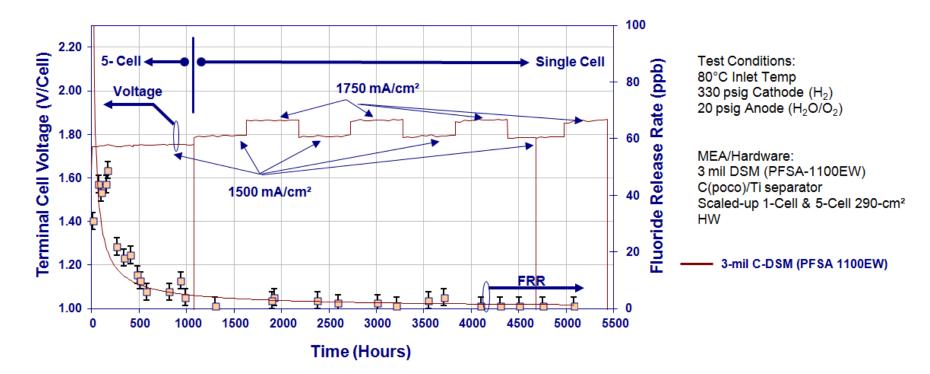
	Go/No Go Decision Points	Progress Notes	%Complete
Membrane	 Scale-up DSM membrane to 290cm² Evaluated in short stack @ 80°C and 1500-1700 mA/cm² 	 Operated Scaled-up membrane for 5,000+ hrs Reduced membrane costs via innovative supports Performance DSM > Nafion[®] 1135 	100% (June 2011)
Ň	DSM evaluation at high pressure, high current density	 Successfully operated DSM at 5,000 psig Successfully operated DSM at 5,000 mA/cm², 1,000 hrs 	100% (Mar. 2013)
Cell Separator	Evaluate cell-separators in short stacks @ 80°C for 5,000 hrs	 Completed investigation of new Mat'l for future cost reductions. Includes: nitrided components, low-cost carbon (Entegris), and TreadStone cell-separators Testing Completed – 5,000+ hrs Projected cell-separator lifetime: 60,000+ hrs 	100% (Sep. 2012)
Stack/System Development	Completed fabrication of prototype electrolyzer system capable of providing 12 kg-H ₂ /day at 300-400 psi that has the potential of meeting DOE's cost target for distributed H ₂ production	 System delivered to NREL and validated Completed DOE's Joule Milestone 	100% (June 2012)

Membrane Progress: **Membrane/Catalyst Evaluations**

DSM Supports

- Developed high efficiency DSM membranes
 - Chem-etched substrates used to lower cost, aid ease of fabrication

 Developed electrode structures with reduced catalyst loadings: 0.7 mg Pt/cm² (Pt/Ir-Anode), 0.4 mg Pt/cm² (Pt/carbon-Cathode)

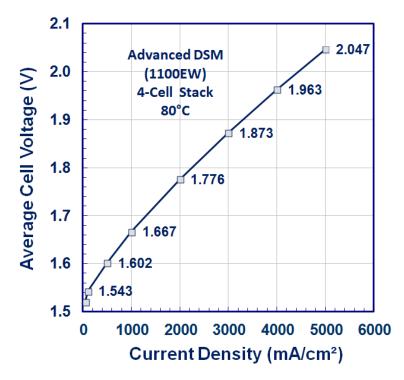

Previously 8 mg Pt/cm²

 Successful testing of 3M NSTF Pt (cathode) and PtIr (anode) catalyst: 3M catalysts are one-order magnitude lower (~0.10 to 0.15 mg Pt/cm² Anode/Cathode)

Alternative BPSH hydrocarbon membranes exhibited high degradation rates but are effective in reducing cross-over

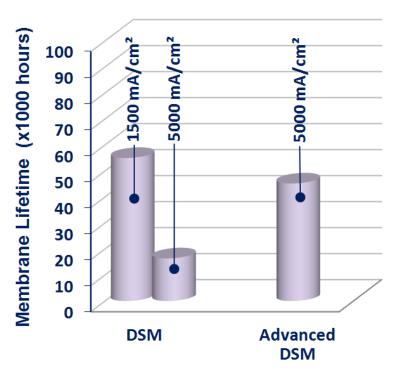
Membrane Progress: Durability Testing (5,000 hours)

Performance


- Completed 1,000 & 5,000 Hour Life-Test Milestones
 - □ Scaled-up 5-cell (290-cm²)
 - □ 1.73-1.75V (~88% HHV)
- DSM MEA from 5-cell short stack re-assembled into a single-cell stack, total operating time = 5430 hours
- Scaled-up cells include low-cost components used in final stack assembly

Membrane Degradation (Estimated Lifetime)

- F ion Release Rate: 3.7 μg/hr (<10 ppb)</p>
- DSM -1100EW (Stabilized Ionomer): ~55,000 hours



Membrane Progress: High Current Density Operation (5,000 mA/cm²)

Performance @ 5,000 mA/cm²

- Advanced DSM: Improved membrane stability at high operating current density
- Operated 4-Cell stack at 5,000 mA/cm² for 1,000 hours
 - □ Average cell voltage: 2.05V (~74% HHV)
- DSM can endure operation at 10,000 mA/cm² (in continuous 24 hour test)

Membrane Degradation (Estimated Lifetime)


- In PFSA membranes, high current density will reduce lifetime
- Advanced DSM with proprietary additive mitigates degradation and improves life at high operating current densities
 - 200,000 hour lifetime expected at 1,500 mA/cm²

8

Membrane Progress: Mechanical Stability and High pressure Operation (5,000 psig)

Hydrogen at 5,000 psig (Ambient O₂) Generated directly in PEM Electrolyzer

- DSM Utilized in High-Pressure Operation
 - Stack components developed under current program used in the fabrication of high-pressure stacks
 - Utilizes containment rings, eliminates need for stack enclosure (or external support dome)

DSM Membrane

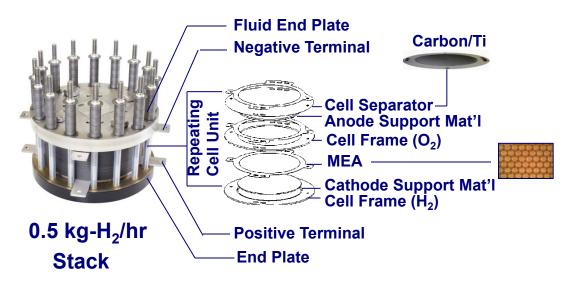
- High-strength
- No x-y dimensional changes upon wet/dry or freeze-thaw cycling
- Customized MEAs provide more support at edge regions and/or at ports under extreme clamping loads
- Demonstrated significant improvement in membrane creep property and mechanical stability

5,000 psi Giner Electrolyzer Multi-Cell Stack Design Work conducted under DOE Program DE-SC0001486 (see Poster PD065)

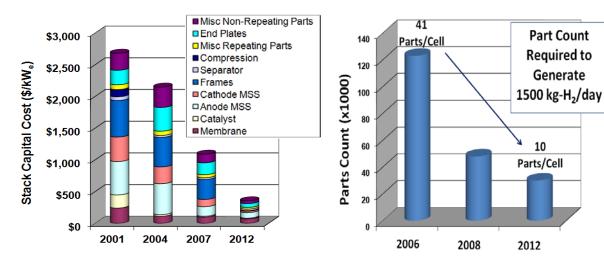
Cell-Separator Progress

Carbon/Titanium

- Carbon/Titanium Cell-Separators Scaled-up to 290cm²
 - Cell-Separators fabricated with low porosity carbon
 - POCO Pyrolitic Graphite (Surface Sealed)
 - □ Evaluated in short stack for 5,000+ hours
 - Utilized in final stack build
- Analysis
 - Low hydrogen uptake (low embrittlement)
 - Lifetime estimate of C/Ti Cell Separators> 60,000 hours
- Alternative low-cost materials identified
 - Low-Cost Carbon, Nitrided, & TreadStone Cell-Separators
 - Zr/Ti & ZrN/Ti indicate long lifetime, but loss of coating


Cell -Separator	Time (Hours)	H ₂ uptake (ppm)		
C/Ti (290-cm²)	5430	104		
Zr/Ti(160-cm²)	500	140		
ZrN/Ti (160-cm²)	500	31		
Dual Layer Ti (160-cm ²)	500	1105		
Ti (baseline)	0	≈ 60		
Ti Failure/Embrittlement: ~8000 ppm				

Property	Units	DOE Target FC Bipolar Plates 2017 ¹	GES C/Ti Cell- Separator 2012
Cost	\$/kW	3	> 10
Electrical Conductivity	S/cm	> 100	>300 (680 Poco)
Flexural Strength	MPa	>25	86.1 (Poco)


¹Fuel Cell Technologies Office 2007 MYRD&D

Stack Progress: Advancements & Cost Reductions

GINER

The repeating cell unit comprises 90% of electrolyzer stack cost

Stack Improvements >60% Stack Cost Reduction

- Increased active area (160->290cm²)
- Reduced catalyst loadings 8->1 mg/cm²
- Reduced Part Count from 41 to 10 Parts/Cell-50% labor reduction
- Pressure Pad: Sub-assembly eliminated
- Molded Thermoplastic Cell Frame
- Cell-Separators: Replaced Nb/Ti with Carbon/Ti
- Frame Thickness reduced (by 30%)
 - Reduces Cathode & Anode Support Mat'l
- DSM MEAs fabricated w/chem-etch supports- 90% cost reduction
- Carbon Steel End Plate (previously S.S.) - 66% material cost reduction
- Stack commercialized
- Broadened product range to include large multi-cell stacks(200+ cells/stack)
- C € Compliant

System Progress

- Assembly: 100% Complete
- Completed series of manuals covering construction, safety and performance
 - System Training Manual
 - System Operation Manual
 - Hydrogen Safety & Response Plan
 - Failure Modes and Effects Analysis (FMEA)

System delivered to NREL for validation

System Specs:

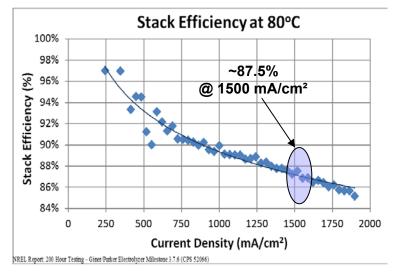
System oversized to accommodate larger stacks. Dimensions: 7.2' tall x 6.6' long x 7.8' wide. 3 Compartments (H₂, O₂, and Power Supply/Controls) **Production Rate** $0.5 \text{ kg H}_2/\text{hr} (-3.4\% \text{ dryer})$ 2.0 kg-H₂/hr (w/ larger Stack & Power Supply) **Operating Pressure** H₂ 390 psig; O₂ atm **Operating Temperature** 80°C Membrane DSM-PFSA. Stack Size Utilized low-cost stack (290 cm²/cell, 27 Cells) Stack Current Density 1500-1900 mA/cm² Other Water Consumption: 5.75 liters/hr Max. Stack Power Requirement: 24 kW Heat Rejection: 3.3 kW Dual-column dryer to reduce maintenance and desiccant replacement

System Enhancements:

- Eliminated stack enclosure (Dome)
- Added ventilation fan to satisfy safety Hydrogen Refueling System Safety Codes
- Electrical lockouts added to stack compartment

GINER

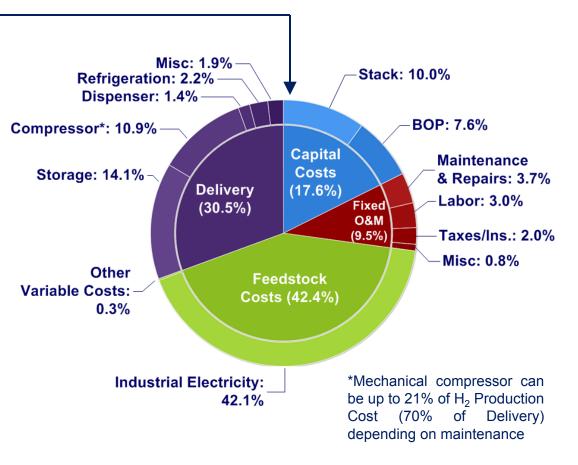
109-10 2:01 41


System Progress: Validation

Giner/Parker Electrolyzer Accumulated Test Time: 100.5 hours 100 Hour Test for Joule Milestone Stack Power (kW sion Faulty Press, Trans. lightning strike, start 25 Stack Power (kW) 20 Sche duled shutdown Widfire evac. 15 Restart w/add1 cooling Polarization curve te sting 309.0 06121 5.32 S2423:21 062601.05 0020 13:54 062 102.43 062804:21 0623 17:0 410.98 162512:10 22:49 0612906:00

Time

- System Validated at NREL in June 2012
- Nominal operating conditions: 390 psig, 1500 -1900 mA/cm²
 - High stack voltage efficiency: >87% HHV (73.6% LHV) @ 1500 mA/cm²; Energy efficiency;46.6 kWh_e/kg-H₂
 - Stack Efficiencies in line with DOE 2012 goals
- Hydrogen drying: 3.4%
- DOE Joule Milestone Completed !
- 3rd party validation of stack by Areva
 - Operating at multiple sites
 - Customer confirms 2,000+ hours at 47 kWh_e/kg @ 1,700 mA/cm²


GINER			Giner/F	Parker Val	idation	*NREL DATA	_
Hydrogen Pr	oduction & Losses	Units	1500 mA/cm²	1750 mA/cm²	1900 mA/cm²	1600* mA/cm²	Operating Ra 1300-1800 m
Stack H2-Producti	on		0.445	0.519	0.563	0.468	-
Membrane permea	ation losses (-0.6%)	۔ ڀر	-0.003	-0.003	-0.011	-0.005	H ₂ -Dryer Los
Phase-Separator (-0.14%)	kg-H ₂ /hr	-0.0006	-0.0007	-0.0011	-0.0007	3.4%
H ₂ -Dryer (3 to 4%)		- b Y	-0.018	-0.021	-0.022	-0.015*	
Total H2-Produc	ction		0.424	0.494	0.529	0.43 *	
Power Cons	umption	Units	1500 mA/cm²	1750 mA/cm²	1900 mA/cm²	1600* mA/cm²	Near Theoret of 0.44 kg-H ₂
Electrolyzer Sta	ck		20.6	24.2	27.0	21.9 ± 3.3*	Off-the-shelf
DC power supply a	& control (assuming 94% eff.)]	+1.23	+1.45	+2.3	+ 4.2	Power Suppl
PLC Rack]	0.05	0.05	0.05	0.05	Efficiency wa
Electrolyzer Water	Pump		0.30	0.30	0.30	0.30	(Large Foreco Rectifiers >95
Heat exchanger fa	ns A & B] ≩	0.05	0.05	0.05	0.05	
H2 sensor circuit p	ump		0.12	0.12	0.12	0.12	-
Total Energy Co	onsumption (No Dryer)		22.3	26.2	29.82	26.6 (+0.7)	Includes 0.7
H ₂ -Dryer	Chiller (1.4kW Max)		0.46	0.60	0.82	0.52	Safety Ventil
	Heaters A & B	4	0.07	0.07	0.07	0.07	Fans (or +1.6 kWh/kg)
Total Power Co	nsumption (w/Dryer)		22.9	26.8	30.71	27.9 ±3.8*	······································
Overall Effic	iencies	Units	1500 mA/cm²	1750 mA/cm²	1900 mA/cm²	1600* mA/cm²	~9 kWh/kg l
Electrolyzer Stack (includes permeation)		ŷ	46.6	46.9	48.9	47.3	due to pow supply & sa
System (No Dryer)		kWh/kg	50.5	50.8	54.1	57.5 (+1.6)	ventalation
System (w/Dryer)		1 Ş	54.0	54.2	58.0	64.8 *	

Projected H₂ Cost

H2A Forecourt Model Analysis					
H ₂ Production Cost	H2A Ver. 2.1.1	H2A Ver. 3.0			
Contribution	(FY 2012)	(FY 2013)			
Capital Costs	\$1.06	\$1.30			
Fixed O&M	\$0.59	\$0.70			
Feedstock Costs @ Efficiency: 50.5 kWh _e /kg -H ₂	\$1.97 (\$0.039/kW)	\$3.09 (\$0.057/kW)			
Other Variable Costs (including utilities)	\$0.01	\$0.02			
Total Hydrogen Production Cost (\$/kg)	3.64	5.11			
Delivery (CSD)	\$1.80 (300 psig output)	\$2.24 (600 psig output)			
Total Hydrogen Production Cost (\$/kg)	5.43	7.35			

Design Capacity: 1500 kg H2/day. Assumes large scale production costs for 500th unit

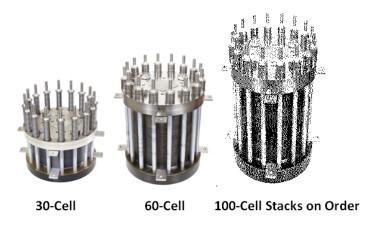
- Industrial electricity at \$0.039/kWh in H2A Ver. 2, \$0.057/kWh; H2A Ver. 3 (in addition to higher installation & delivery costs)
 - FY2012: Stack output 333 psig H₂ (compressed to 6,250 psig) FY2013: Stack output 600 psig H₂ (compressed to12,688 psig)
- Progress inline with achieving *new* 2015 Target of \$3.90/kg-H₂

Summary

□ Membrane: Demonstrated Reproducibility, Durability, and Efficiency

- Demonstrated high efficiency DSM membranes (single-cell, 5-cell, and 27-cell stacks)
- Demonstrated 5,000+ hrs lifetime of scaled-up (290 cm²) DSM membrane at 80°C
- Demonstrated high current density (5,000 mA/cm²) and high pressure (5,000 psig) operation
- Cell voltage efficiency >87%HHV, 46.6 kWh_e/kg-H₂ @ 1500 mA/cm² meeting 2012 DOE targets

Cell Separator & Component Development:


- Demonstrated 5,000+ hrs lifetime of scaled-up cell-separators
- Demonstrated significantly reduced hydrogen embrittlement with carbon/Ti and TreadStone cellseparators
 - Expected cell-separator lifetime range: 60,000+ Hours

□ Scaled-Up Stack:

- Significant progress made in stack cost-reduction (cell-components, membrane, & catalyst)
 - □ 60% reduction in stack cost
- Stack Commercialized & In production :30, 60, and 100-cell configurations

System Development:

- Prototype system delivered to NREL
- DOE Joule Milestone completed
- Negotiating with multiple OEMs, "Giner-Inside" branded systems

Future Plans & Challenges: FY2013 and Forward

2020 cost targets require further cost reductions and improvements in efficiency

Membrane

- Improve membrane performance
 - Higher operating temperatures, pressures, and current densities required to meet new targets
 - □ Lower EW ionomers
 - Reduce membrane resistance
 - □ Improve chemical stability

Stack

- Reduce Stack Costs
 - □ Labor is 33-50% cost of stack
 - Reduce labor cost through new manufacturing techniques
 - New low-cost materials
 - □ Reduce part count in cells
 - Unitize cell components (to further reduce parts/cell)
 - Increase stack active-area to 1ft² (or larger) for large energy storage applications

Distributed Forecourt Water Electrolysis ¹				
H ₂ Production Cost Contribution	New DOE Target (2020)			
Capital Costs	\$0.50			
Fixed O&M	\$0.20			
Feedstock Costs @ Efficiency: 50.5 kWh _e /kg -H ₂	\$1.60 (46.9kWh/kg) (\$0.037/kW)			
Other Variable Costs (including utilities)	<\$0.10			
Total Hydrogen Production Cost (\$/kg)	2.30			
Delivery (CSD)	\$1.70			
Total Hydrogen Production Cost (\$/kg)	<4.00			

¹2012 MYRDD Plan

Future Plans & Challenges...

Stack (Cont...)

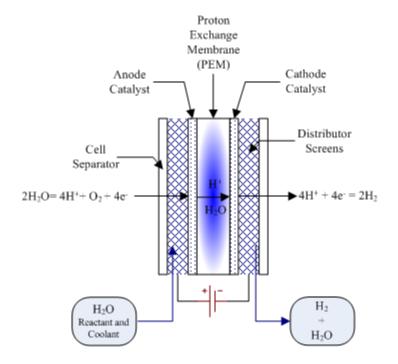
- Design for automated assembly
- Improve pressure capabilities of stacks (6,250 and 12,688 psi)
- Demonstrate stacks under aggressive conditions (wind to hydrogen applications)
 - □ High current density operation

System

- Simplify electrolyzer systems to reduce cost
- Unify BOP components
 - □ In Regenerative Fuel Cell Systems, combine subsystems

Validation

- Industrial collaborations needed to promote technology
- Testing facilities for validation of large MW scale electrolyzers are needed



AMR Technical Slides

Technical Slide 1-

GINER

Technical principle of the PEM-based water electrolysis

PEM Cell Reactions $H_2O \rightarrow 2H^+ + 2e^- + \frac{1}{2}O_2$ Anode half-cell reaction $2H^+ + 2e^- \rightarrow H_2$ Cathode half-cell reaction $H_2O + 2e^- \rightarrow H_2 + \frac{1}{2}O_2$ Overall reaction

Water permeation through PEM

~3H₂O/H+