

2013 DOE Hydrogen and Fuel Cells Program Review

Renewable Electrolysis Integrated System Development & Testing

Kevin Harrison, Michael Peters

May 15, 2013

Project ID: PD031

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

Project start date: Sep. 2003 Project end date: Oct. 2013*

Budget

- Project Funding (2009-2011): \$1375k
- Planned Funding for FY13: \$495k**

Barriers (2012 MYRDD)

- G. System Efficiency
- I. Grid Electricity Emissions (Distributed)
- J. Renewable Electricity Generation Integration (Central)
- L. Operations and Maintenance

Partners

- Xcel Energy (CRADA)
- Proton OnSite (CRADA)
- Giner Electrochemical Systems
- Univ. of North Dakota/EERC
- DOE Wind/Hydro Program
- * Project continuation and direction determined annually by DOE
- **\$230k from Production and Delivery, remaining from Technology validation

Relevance & Approach

- Provide independent testing of state-of-the-art electrolyzer stacks and systems for DOE and Industry
- Quantify and feedback stack and system performance with grid and integration with renewable power systems
- Develop and optimize electrolyzer sub-systems, power conversion and test equipment for renewable hydrogen

Table 3.1.4 Technical Targets: D	Distributed F Production	forecourt Wate 1 ^{a, b, c}	er Electrolysis	Hydrogen
Characteristics	Units	2011 Status	2015 Target	2020 Target
Hydrogen Levelized Cost ^d (Production Only)	\$/kg	4.20 ^d	3.90 ^d	2.30 ^d
Electrolyzer System Capital Cost	\$/kg \$/kW	0.70 430 ^{e, f}	0.50 300 ^f	0.50 300 ^f
Sustem Energy Efficiency	% (LHV)	67	72	75
System Energy Eniciency -	kWh/kg	50	46	44
Stack Energy Efficiency h	% (LHV)	74	76	77
Stack Energy Eniciency	kWh/kg	45	44	43
Electricity Price	\$/kWh	From AEO 2009 ⁱ	From AEO 2009 ⁱ	0.037 ^j

Technical Accomplishments

Demonstrated PEM Electrolyzer Efficiency

- Goal to achieve DOE 2015 targets for;
 - Stack efficiency
 - System efficiency
- 200 hours of operation
- Verified reduced drying losses
- FY12 EE-1 Joule Milestone completed

Compared Stack Performance on a Wind Power Profile

- 10,000 hour performance comparison between variable wind power and constant power operation
- Analyzed stack decay differences between constant and variable modes
- FY13 2Q Joule Milestone achieved

Electrolyzer Stack & System Efficiency

Approach– Gather 200 hours of data to verify against DOE stack and system efficiency targets.

System was instrumented to monitor;

- Stack DC Current
- Stack DC Voltage
- Stack in/output water Temperature
- AC input Voltage
- AC input Current
- AC input Power (calculated)
- Hydrogen production using NREL designed and built mass flow device

5

FY12 EE-1 Joule Milestone

Technical Accomplishment: June 2012 – Complete 100 hours of field testing of a prototype PEM electrolyzer system with the potential to provide 12 kg per day at 300 psig

Created: Jun-29-12 5:01 AM

em E	fficiency		Giner Prediction	NREL DATA*	Stack Current Density
Produc	tion & Losses	Units	1500 mA/cm²	1600* mA/cm²	Operating Range: 1300 - 1800 mA/cm ²
Stack H2-Product	ion		0.445	0.468	
Membrane perme	ation losses (-0.6%)		-0.003	-0.005	✓ H₂-Drver Losses: 3.4%
Phase-Separator	(-0.14%)	kg-H ₂ /	-0.0006	-0.0007	
H ₂ -Dryer (3 to 4%)		-0.018	-0.015*	
Total H2-Produ	ction	1	0.424	0.43*	
Power Consumption		Units	1500 mA/cm²	1600 [*] mA/cm²	Near Theoretical Calc. of 0.44 kg-H ₂ /hr
Electrolyzer Stack			20.6	21.9 *	
DC power supply	& control (assuming 94% eff.)	1	+1.23	+ 4.2	Off-the-shelf
PLC Rack		1	0.05	0.05	Power Supply Efficiency was Low
Electrolyzer Wate	r Pump	× X	0.30	0.30	
Heat exchanger fa	ans A & B		0.05	0.05	
H2 sensor circuit	oump		0.12	0.12	Includes 0.7kW for Safety
Total Power Co	nsumption (No Dryer)		22.3	26.22	/ Ventilation Fans (+0.7kW or
H Drver	Chiller (1.4kW Max)		0.46	0.52	1.6 kWh/kg)
	Heaters A & B		0.07	0.07	
Total Power Consumption (w/Dryer)			22.9	27.9 *	
Overall Efficiencies		Units	1500 mA/cm ²	1600* mA/cm²	~10 kWh/kg loss due to
Electrolyzer Stack (includes permeation)		60	46.6	46.7	power supply
System (No Dr	yer)	h/k	50.5	60.9	
System (w/Dryer)		1 🔮	54.0	64.8 [*]	1

System Efficiency – Drying Losses

Technical Accomplishment: NREL validated hydrogen losses from the electrolyzer dryer system

- Mass flow sensor: 11 12 grams/hr (In question)
- Volumetric: 15.2 15.6 grams/hr (reliable)
- Volumetric results better than predicted by Giner 18 grams/hr

NATIONAL RENEWABLE ENERGY LABORATORY

Stack Efficiency Details

Efficiencies on track to achieve DOE Targets (2012 MYRDD)

	2011	2015	NREL	
	Status	Target	Data	
Stack	74	76	73.6	% LHV

- Stack current density range: 1300 1800 mA/cm²
- Cell voltage (avg): 1.757V @ 1500 mA/cm² (80°C)
- High Stack voltage efficiency
 - 87% HHV (<u>73.6% LHV</u>)
 @ 1500 mA/cm²
- Operating pressure: 390 psig

PEM Electrolyzer Stack Test Bed

Technical Accomplishment: Determined the impact of

operating stacks with wind power

- Proton Onsite (CRADA) ~50 kW, 13 kg/day PEM electrolyzer on loan from U.S. Army
- System installed at the Xcel
 Energy/NREL Wind-to-Hydrogen project

PEM Electrolyzer Stack Test Bed

FY12 Technical Accomplishment: Instrumented Proton H-Series and took control of AC/DC power supplies to operate stacks in variable power mode

Monitoring

- Stack input and output temperature
- Stack voltage and current

Control

- Individual control over each of 3 stacks
- Programmable wind/solar profiles

Benefits

- Stacks see same;
 - Ambient and input water temperature
 - Water quality
 - Cooling water cycles

Electrolyzer Life-Cycle Costs

Technical Accomplishment: 7500 hours of variable power operation – First stack decay rate showing signs of failure.

Stack Operating Mode	Decay Rate (µV/cell-hr)	Equation	Equation Stack (104°F)		
Variable	16.7	y = -0.1575x + 94.33	77.95	7520	
		y = -0.1849x + 100.01	80.78	/338	
Variable	9.7	y = -0.1691x + 93.298	75.71	7538	
		y = -0.1546x + 93.08	77.00		
Constant	9.2	y = -0.1594x + 92.922	76.34	7538	
		y = -0.1686x + 95.028	77.49		

Electrolyzer Life-Cycle Costs

- Result: The storage without hydration and vintage of stacks has led to reduced life of these stacks
- Stack A failed shortly after 7500 hr test
- Stack B failed shortly after this additional 2500 hr
- Stack C hasn't failed but...

Stack Operating Mode	Decay Rate (µV/cell-hr)	Date	Equation	Stack Voltage (104ºF)	Test Period Hours
Failed	N/A	7/25/2012	y = -0.1849x + 100.01		N/A
		N/A	N/A	N/A	
Constant	240	7/25/2012	y = -0.1546x + 93.08	77.0	2476
		3/21/2013	y = 0.7885x + 15.219	97.2	24/0
Variable	132	riable 132 $7/25/2012$ $y = -0.1686x + 95.028$ 7		77.5	2476
		3/21/2013	y = 0.0088x + 87.686	88.6	

Collaborations

<u>Formal</u>

- Proton Onsite (CRADA) Electrolyzer stack durability testing
- MAETEC (NCAP) Preparing to test electrolyzer
- PDC Machines (CRADA) Compressor reliability testing
- Xcel Energy (CRADA) Wind-to-Hydrogen demonstration project since 2005

Information Sharing

- University of North Dakota/Energy & Environmental Research Center
- Worldwide electrolyzer and hydrogen component manufacturers

International

- ADvanced ELectrolyzer (ADEL) Workshop (Foreign Payment)
- Risø-DTU (Denmark) Modeling and experimental verification of enhanced energy storage systems

Future Work – RD&D Challenges

Analysis

- Analyze benefits of novel drying system to inform experimental device
- Analyze electrolyzer operation under variable wind power to take advantage of time-of-day electricity pricing

Experimental

- Develop prototype hydrogen drying system to improve electrolyzer system efficiency
 - Reduce drying system to achieve < 3% drying losses in a variable wind power mode of operation
- Long-duration testing of three (3) PEM electrolyzer stacks
 - 6000 hours, variable wind profile, stack decay
- Commission and operate prototype Giner electrolyzer at ESIF
 - Improve system design to enable long-duration operation

Summary

Relevance: Goals consistent with reducing capital cost, improving stack and system efficiency and integrating systems with renewable energy sources

Approach: Develop and demonstrate advanced controls, novel sub-systems, system-level improvements and integrate with renewable energy sources to reduce the cost of hydrogen

Technical Accomplishments:

- Verified stack and system efficiency of DOE-awarded system from Giner
 - Stack 73.6 % LHV
 - System 64.8 kWh/kg (~ 10 kWh/kg attributed to low power supply efficiency)
- Completed 10,000 hours of variable wind-profile stack testing
 - o Compared voltage decay rates of steady-state and variable stack current operation
 - New stacks to be supplied from Proton

Collaborations: Two new CRADA's in 2013. Verification stack and system performance. Disseminating results to industry and stakeholders worldwide.

Proposed Future Research (Analysis/Experimental):

- Analyze time-of-day pricing scenario to reduce cost of hydrogen
- Novel drying approach to increase system efficiency
- Long-duration testing of new stacks from Proton under wind-profile mode
- Improve Giner system to enable extended operation at ESIF