Solar hydrogen production by photoelectrochemical (PEC) water-splitting: Advancing technology through the synergistic activities of the PEC working group (PEC WG)

Prof. Thomas F. Jaramillo

Dept. of Chemical Engineering
Stanford University

May 16, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
The US DOE PEC Working Group approach towards efficient and durable solar H_2 production.

DOE Targets:
- $>1000\text{h @}\text{STH} 10-25\%$
- Projected PEC Cost: $2 - 4/\text{kg} \text{H}_2$
Storing solar energy in the form of chemical bonds

\[\text{sunlight} \rightarrow \text{Device/Process} \rightarrow \text{H}_2 \text{O} \rightarrow \text{O}_2 \text{ and H}_2 \]
(Photo-)electrochemical schemes

Scheme 1: Separate devices for electricity generation and for H_2 production.

Scheme 2: One integrated device for solar harvesting and H_2 production.
Techno-Economics: PV-electrolysis

- “Electrolysis: Information and Opportunities for Electric Power Utilities”
 DOE-NREL Technical Report, NREL/TP-581-40605
 September 2006

- www.solarbuzz.com (February 20, 2012)

![Diagram showing the costs of hydrogen production from solar energy and comparison with USA gasoline costs.]

- **Industrial**
 - $4.09/kg
 - $0.045/kWh

- **Commercial**
 - $5.40/kg
 - $0.069/kWh in 2005

- **Industrial Solar**
 - $17.39/kg
 - $0.166/kWh (2012)
 - 500 kW system
 - sunny climate

- **USA gasoline (2013)**
 - $8.89/kg
A world record PEC device

- Direct water electrolysis.
- Unique tandem (PV/PEC) design.
- 12.4% Solar-to-hydrogen

![Experimental Cell](image)

Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle • Bechtel
Q: Can H_2 production by solar PEC water-splitting ever be cost-effective?

To answer this question, we need a techno-economic analysis!

Four reactor types

Type 1: Single Bed Particle Suspension
- STH Efficiency: 10%
- Diagram showing a bed with particles and reaction arrows indicating $4H^+ + 4e^- \rightarrow 2H_2$ and $2H_2O + 4H^+ \rightarrow O_2 + 4H^+$.

Type 2: Dual Bed Particle Suspension
- STH Efficiency: 5%
- Diagram showing two beds with perforated pipes and reaction arrows indicating $4hν + 4H^+ + 4A \rightarrow 2H_2 + 4A$ and $4hν + 2H_2O + 4A \rightarrow O_2 + 4H^+ + 4A$.

Type 3: Fixed Panel Array
- STH Efficiency: 10%
- Diagram showing a panel with electrolyte, O$_2$, H$_2$, and water inlet and outlet.

Type 4: Tracking Concentrator Array
- STH Efficiency: 15%
- Diagram showing a concentrator panel with a parabolic cylinder reflector and linear PEC cell.
Which system is the most cost-effective?

Recall that 1 kg of H₂ is the energy equivalent of 1 gallon of gasoline.

How does the $/kg H_2 change if we modify our assumptions on material performance?
Just how feasible are the efficiency assumptions in the techno-economic analysis (STH 10-25%)?
Modeling ‘Realistic’ PEC efficiencies

Device Options

Solid-state V_{oc}
- High V_{oc} (~470mV loss)
- Low V_{oc} (~590mV loss)

Catalyst Activity
- Precious metal (Pt/Ru)
- Non-precious metal (MoS$_2$/MnO$_x$)

Shunt
- Zero shunt losses ($R_{sh} = \infty \Omega$)
- “Significant” shunt losses ($R_{sh} = 100 \Omega$)

Absorber Configuration
- Single
- Dual stacked
- Dual side-by-side

Calculated theoretical limits for a ‘realistic’ STH efficiency as a function of bandgap, taking into account:

- Reaction overpotentials (H_2 and O_2)
- Entropic losses ($V_{ph} < E_g$)
- Shunts

Can reach 10-11 % STH with $E_g \sim 2.3$ eV
Calculated theoretical limits for a ‘realistic’ STH efficiency as a function of bandgap, taking into account:

- Reaction overpotentials (H_2 and O_2)
- Entropic losses ($V_{ph} < E_g$)
- Shunts

Multi-junction or Tandem Devices

Calculated theoretical limits for a ‘realistic’ STH efficiency as a function of bandgap, taking into account:

- **Reaction overpotentials** \((H_2 \text{ and } O_2)\)
- **Entropic losses** \((V_{ph} < E_g)\)
- **Shunts**

Can reach ~ 25 % STH with \(E_{g1} \sim 1.2 \text{ eV} \) & \(E_{g2} \sim 1.8 \text{ eV}\)

Calculated theoretical limits for a ‘realistic’ STH efficiency as a function of bandgap, taking into account:

- Reaction overpotentials (H_2 and O_2)
- Entropic losses ($V_{ph} < E_g$)
- Shunts

Can reach 15% STH with $E_{g1} \sim 1.6$ eV & $E_{g2} \sim 1.6$ eV

The US DOE PEC Working Group approach towards efficient and durable solar H₂ production

DOE Targets:
>1000h @STH 10-25%
Projected PEC Cost:
$2 - 4/kg H₂

Approach 1:
Stabilize High Efficiency Systems

Approach 2:
Enhance Efficiency in Thin-Film Materials

Approach 3:
Develop 3rd Generation Materials and Structures
Approach #1 (NREL): Stabilizing High Efficiency Materials & Devices

- **High Efficiency**
 - Work with single-crystal (high purity) semiconductors composed of Group IIIA and VA p-block elements (III-V)
 - Unrivaled photovoltaic efficiencies

- **GaInP$_2$/GaAs Tandem**
 - Only demonstrated system that exceeds unbiased 10% solar-to-hydrogen target
 - 12.4% with Pt-black counter electrode, >16% with RuO$_2$ CE
 - Metal organic chemical vapor deposition (MOCVD) synthesis
 - Synthesis by NREL’s III-V team

- **Focus: Improve Durability**
 - High efficiency III-V’s prone to degradation during PEC operation
 - Need enhanced corrosion resistance to meet both efficiency and durability targets

\[\text{Efficiency} = \frac{(120 \text{mA/cm}^2 \times 1.23 \text{V}) \times 100}{1190 \text{mW/cm}^2} = 12.4\% \]

- p-GaInP$_2$/GaAs tandem after 24 hours of operation in 3M H$_2$SO$_4$
Approach #2 (MVSystems / HNEI): Improving thin-film efficiency

The MVS/HNEI research team is accelerating the development of three important thin-film material classes with high potential for reaching low-cost H₂ PEC production.

Development of new metal oxides

- **a-SiC: surface energetics management**
- **Chalcogenides bandgap engineering**

2.2eV CuWO₄

CuWO₄-CNT nanocomposite

Chalcogenides bandgap engineering

- CuGaSe₂
- CuInₓGa₁₋ₓS₂
- 1.6 eV, 2.0 eV, 2.2 eV, 2.4 eV
Approach #3 (Stanford Univ.): 3rd Generation Device Structures, High Surface Area Scaffolds for PEC Materials

Conventional Planar Devices

- Thick hematite layer
- Dense ITO layer
- Glass

- Low IQE (long charge trans.)
- High loading (high OD)
- Low device performance

HSE Support

- Dense ITO layer
- Glass

- High IQE (short charge trans.)
- Low loading (low OD)
- High device performance

Interfacial Engineering

- Ti-Hematite | HSE-ITO
- ALD TMT Tin Oxide
- Post annealed ALD TDMA Tin Oxide
- Spray Tin Oxide
- As-prepared ALD TDMA Tin Oxide

6x improvement in J_{photo} from SnO$_2$ interfacial layer

- Photo current onset
- E (V vs RHE)
- Dark current onset

- Low load
- High load
- HSE

- J (mA/cm2)
- 0.0
- 0.2
- 0.4
- 0.6
- 0.8

20
Theory at the molecular-scale (LLNL): Ab-initio molecular dynamics (MD) to investigate the electrode-electrolyte interface

Ab-initio molecular dynamics simulations of water-InP and water-GaP interfaces

Experimental observation: Pt loading on GaP(001) improves the conversion efficiency **only a little** [ChemPhysChem 13, 3053 (2012)]

- InP HB network explores a broader phase space
- GaP HB network prohibits interchange between most topologies

InP-water interface: good h⁺ transport

GaP-water interface: bad h⁺ transport
The US DOE PEC Working Group approach towards efficient and durable solar H₂ production

Summary

• Technologically, PEC water-splitting has already been accomplished.
• A techno-economic analysis shows that it is possible to reach cost targets if materials with appropriate properties can be developed.
• A feasibility study shows that these properties are within reach based on the current state of materials development.
• The PEC WG is collaborating synergistically to accelerate R&D efforts.