

Electrochemical Hydrogen Compressor

Ludwig Lipp FuelCell Energy, Inc. May 15, 2013

Project ID #PD048

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 7/15/10
- Project end date: 7/14/13
- Percent complete: 92%

Budget

- Total project funding
 - DOE share: \$1993k
 - Contractor share: \$629k
- Funding for FY13: \$545k

Barriers

- Barriers addressed for gaseous hydrogen compression:
 - More reliable
 - Lower-cost
 - Higher efficiency

Partners

- Collaborations: Sustainable Innovations, LLC
- Project lead: FuelCell Energy

Relevance

Impact of EHC:

- Increases reliability/availability over current mechanical compressors
- Ensures "no possibility of lubricant contamination"
 (No moving parts) → Fuel Cell Quality H₂
- Increases Compression Efficiency to 95% (DOE 2015 Target)
- Potentially reduces cost of H₂ delivery to <\$1/gge
 (DOE Long Term Target)

Approach

- Use high-pressure electrolyzer experience for mechanically robust cell design
- Higher current density operation to minimize capital and operating costs
- Improved flow field design to increase H₂ recovery efficiency
- Simple system: Reduce capital cost by increasing cell size and reducing number of parts

Approach

ITEM	APPROACH	
Increase Pressure, Life, Efficiency	-Cell & Stack Design Enhancements -MEA Improvements -Multi-Stage Operation -Very High Single Stage Compression	
Lower System Cost Design Development & Scale-Up	-Cell & Stack Design Enhancements -Increase Current Density -Increased Durability/Life -Increase Single-Stage Pressure Capability -Design for Mfg & Assembly -Lower Labor Rates -Lower Cost Materials of Construction -Lower Part Count -Leverage Economies of Scale -Increase Cell Active Area	

Principle of Electrochemical Hydrogen Compressor

- Simple operating principle with no moving parts Solid State!
 - Use of hydrogen electrode for high compression efficiency

Compression Heat

Multistage Adiabatic
Compression with Interstage
Cooling

VS.

Isothermal Compression of EHC

Hydrogen does not significantly heat up during compression in EHC

EHC Pressure Capability

Met DOE 2015 pressure target for forecourt compressors

Reduction in the Energy Consumption of EHC

Improvements made:

- Lower cell resistance
- Lower applied voltage

Hydrogen Product Pressure, (psi)

Improved cell design for 3000 psi

More effort needed for 6,000 - 12,000 psi range

EHC Durability

7,000 hr operation at elevated current density (750 mA/cm²)
Almost 10,000 hr operation at ≥ 95% hydrogen recovery

EHC Cost Reduction

EHC Hydrogen Flux Progression

Improvements made:

- Higher performance MEA
- Lower cell resistance at higher pressure
- Improved manufacturing tolerances
- Increased output
- Reduced part count

Ten-fold increase in current density

Reducing Cell Part Count

(Reduction in Parts per EHC Cell)

Advanced design has <50% part count of original design

Decrease in part count is opportunity for further cost reduction

Opportunities for Cost Reduction

(Stack Cost/H₂ Compression Capacity - \$/kg-H₂/day)

Improvements planned:

- Higher current density operation
- · Cell area scale-up
- Stack scale-up
- Reduction in # of cell parts
- Lower cost cell and stack materials
- Lower cost fabrication

EHC Stack Development

	3-Cell Stack #1	3-Cell Stack #2	3-Cell Stack #3	5-Cell Stack	10-Cell Stack
Pressure, (psig)	4,550	Up to 1,000	2-3,000	3,000	Up to 3,050
Current Density, (mA/cm²)	≤500	Up to 2,200	≤500	≤450	≤500
Capacity, (lbs/day)	0.2	Up to 0.8	0.2	0.3	0.6
Operation, (hours)	150	~100	>2,000†	>200*	~400

^{*} Currently In Operation at FCE

Cumulatively ~3,000 hr operating experience

[†] At Sustainable Innovations

EHC 5-Cell Stack

5-Cell EHC Stack Pressurization Data

Up to 3,000 psi capability Achieved stable operation

Collaborations

Prime

- FuelCell Energy, Inc. (Industry):
 - System development and application engineering
 - Membrane and electrode design and fabrication

Subcontractor

- Sustainable Innovations, LLC (Small Business):
 - Cell and stack design and fabrication
 - Scale-up design and fabrication
 - EHC stack cost reduction and estimates

Proposed Future Work

- Continue endurance test of 10,000 hr cell
- Continue testing of 5-cell 81 cm² stack
- Begin testing 185 cm² single cell to verify successful area scale-up
- Complete fabrication of 185 cm² 8-cell stack
- Prepare test facility for larger capacity EHC
- Demonstrate ≥ 2 lb/day H₂ capacity compressing to 3,000 psi

Scale-Up Plan to Reach 8 lb/day

Activity Covered Under Current Funding Activity Not Covered Under Current Funding

25 - Cell 185 cm² Active Area 500 – 1000 mA/cm² Up to 8 lb/day

8 - Cell 185 cm² Active Area 500 – 1000 mA/cm² 2 - 3 lb/day

5 - Cell 81 cm² Active Area 400 mA/cm² 0.3 lb/day Single Cell 185 cm² Active Area 500 - 1500 mA/cm² Up to 0.5 lb/day

Achievements in EHC Technology Development

Parameter	Program Goals	Current Status	DOE Goals
Hydrogen Product Pressure	Up to 3,000 psi building block, 6-12 kpsi	12,800 psi single stage 6,000 psi 2-stage	12,500 psi
Hydrogen Inlet Press.	5 - 300 psi	0 – 2,000 psi	300 psi
Compression Ratio	Up to 300:1	300:1	43:1
Hydrogen Recovery Efficiency	90 - 95%	>95%	99.5%
Hydrogen Flux	500 -1,000 mA/cm ²	750 mA/cm ² for 7,000 hr	-
Hydrogen Capacity	2-4 lb/day at 3,000 psi	~0.6 lb/day	Up to 1000 kg/day
Endurance Capability	1,000 hrs at 3,000 psi	10,000 hrs at 3,000 psi	>5 years
Compression Efficiency	<10 kWh/kg at 3,000 psi	4-12 kWh/kg from <30 to 3,000 psi	6.2 kWh/kg from 300 to 12,500 psi

Project Summary

Relevance: Provide highly efficient, reliable and cost-effective hydrogen compression (up to 6,000/12,000 psi)

Approach: Develop electrochemical compressor – solid state device

Technical Accomplishments:

- Reduced capital cost by > 50% by increasing current density from 400 to 750 mA/cm² and by design improvements (reduced cell part count)
- Operated almost 10,000 hrs at high H₂ recovery (≥ 95%)
- Demonstrated single stage pressure capability to >12,000 psi

Collaborations: Active partnership with industry (Sustainable Innovations) on materials, design and fabrication

Proposed Future Work: Scale-up 185 cm² cell design to short stack to increase throughput and lower the cost

Acknowledgement

- FCE: Pinakin Patel, Ray Kopp, Jonathan Malwitz,
 Paul Pinard
- Sustainable Innovations, LLC: Trent Molter and team
- DOE: Erika Sutherland, Dave Peterson, Sara Dillich,
 Scott Weil, Monterey Gardiner, Paul Bakke